İçeriğe atla

Kaldırılabilir tekillik

Karmaşık analizde, bir kaldırılabilir tekillik veya daha düzgün bir söylemle, bir holomorf fonksiyonun kaldırılabilir tekilliği, fonksiyonun görünüşte holomorf olmadığı; ancak daha yakın bir incelemeden sonra fonksiyonun tanım kümesinin bu tekilliği de içerecek şekilde genişletilebileceği (fonksiyonun holomorf kalacağı şekilde) bir noktadır.

Mesela, z ≠ 0 için

fonksiyonunun z = 0 'da tekilliği vardır. Bu tekillik, f(0) = 1 tanımlanarak kaldırılabilir. Sonuçtaki fonksiyon bir sürekli (holomorf) fonksiyondur.

Formel olarak, eğer U, karmaşık düzlem C 'nin açık bir kümesi, a, U 'nun bir noktası ve f : U - {a} → C holomorf ise; holomorf bir g : UC fonksiyonu f 'ye U - {a} üzerinde eşitse, o zaman a 'ya f nin kaldırılabilir tekilliği adı verilir. Böyle bir g varsa, "f, a üzerine holomorf bir şekilde genişletilebilir" denir.

Riemann teoremi

Kaldırılabilir tekillikler üzerine Riemann teoremi bir tekilliğin ne zaman kaldırılabileceğini ifade eder.

Teorem. Aşağıdaki ifadeler birbirine denktir:

i) f, a üzerine holomorf bir şekilde genişletilebilir.
ii) f, a üzerine sürekli bir şekilde genişletilebilir.
iii) Üzerinde f'nin sınırlı olduğu, a 'nın bir komşuluğu vardır.
iv) limza(z - a ) f(z) = 0.

i) ⇒ ii) ⇒ iii) ⇒ iv) çıkarımları barizdir. iv) ⇒ i) 'i kanıtlamak için, hatırlamamız gereken bir fonksiyonun a noktasında holomorf olmasının a noktasında analitik olmasına denk olduğudur; yani bir kuvvet serisi temsiline sahip olmasıdır.

tanımını yapalım. O zaman,

olur. Burada, varsayımla (z - a)f(z) fonksiyonu D üzerinde sürekli bir fonksiyon olarak görülebilir. Başka bir deyişle, h, D üzerinde holomorftur ve a etrafında Taylor serisine sahiptir:

Bu yüzden,

f 'nin a üzerine holomorf genişlemesidir. Bu da iddiayı kanıtlar.

Tekilliklerin diğer çeşitleri

Gerçel değişkenli fonksiyonların aksine, holomorf fonksiyonlar korunmalı tekillikleri tamamen sınıflandırılabildiği için yeteri kadar katıdır. Holomorf bir fonksiyonun tekilliği ya aslında tekillik değildir; yani kaldırılabilir tekilliktir ya da aşağıdaki iki çeşitten biridir:

  1. Riemann teoreminin ışığında, kaldırılabilir olmayan bir tekillik verildiğinde, limza(z - a )m+1f(z) = 0 yapacak bir m doğal sayısının varlığı sorgulanabilir. Böyleyse, a 'ya f 'nin bir kutbu denir ve böyle en küçük bir m 'ye a 'nın mertebesi denir. Böylece, kaldırılabilir tekillikler kesinlikle mertebesi 0 olan kutuplardır. Holomorf bir fonksiyon kutuplarının yakınında düzgün bir şekilde patlama yapar.
  1. f 'nin a noktasındaki korunmalı bir tekilliği kaldırılabilir veya kutup değilse, o zaman bu nokta esaslı tekilliktir. Her açık delikli U - {a} kümesini, f 'nin karmaşık düzlemin açık ve yoğun bir altkümesine gönderdiği de gösterilebilir.

Ayrıca bakınız

  • Analitik kapasite
  • Kaldırılabilir süreksizlik

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

Karmaşık analizde, tam fonksiyon veya başka bir deyişle integral fonksiyonu, karmaşık düzlemin tümünde holomorf olan karmaşık değerli bir fonksiyondur. Tam fonksiyonların tipik örnekleri polinomlar, üstel fonksiyon ve bunların toplamları, çarpımları ve bileşkeleridir. Her tam fonksiyon tıkız kümeler üzerinde düzgün bir şekilde yakınsayan kuvvet serileri ile temsil edilebilir. Doğal logaritma ya da karekök fonksiyonu tam bir fonksiyona uzatılamaz.

<span class="mw-page-title-main">Harmonik fonksiyon</span>

Matematiğin matematiksel fizik alanında ve rassal süreçler teorisinde bir harmonik fonksiyon, Rn'nin U gibi açık bir kümesi üzerinde f : UR şeklinde tanımlı, Laplace denklemini, yani

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

<span class="mw-page-title-main">Kutup (karmaşık analiz)</span>

Karmaşık analizde kutup ya da doğru bir söylemle bir meromorf fonksiyonun kutbu, 1/zn 'nin z = 0 noktasındaki tekilliği gibi davranan matematiksel bir tekilliktir. Bu özellikle şu anlama gelir: Bir f(z) fonksiyonun z = a noktasındaki kutbu, z noktası a noktasına yaklaştıkça f(z)'yi sonsuza düzgün bir şekilde yaklaştıran noktadır.

<span class="mw-page-title-main">Esaslı tekillik</span>

Karmaşık analizde, esaslı tekillik veya daha düzgün bir söylenişle bir fonksiyonun esaslı tekilliği, fonksiyonun çok uç bir davranış gösterdiği katı bir tekilliktir.

<span class="mw-page-title-main">Cauchy integral formülü</span>

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

<span class="mw-page-title-main">Karmaşık düzlem</span>

Matematikte karmaşık düzlem, gerçel eksen ve ona dik olan sanal eksen tarafından oluşturulmuş, karmaşık sayıların geometrik bir gösterimidir. Karmaşık sayının gerçel kısmının x-ekseni boyuncaki yer değiştirmeyle, sanal kısmının ise y-eksenindeki yer değiştirmeyle temsil edildiği değiştirilmiş bir Kartezyen düzlem olarak düşünülebilir.

Karmaşık analizde Charles Émile Picard'ın ismine atfedilen Picard teoremi analitik bir fonksiyonun görüntü kümesiyle ilişkin ayrı ayrı ama yine de birbirine bağlı iki teoremdir.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

<span class="mw-page-title-main">Korunmalı tekillik</span>

Matematiğin bir dalı olan karmaşık analizde, korunmalı tekillik kendisine yakın başka bir tekilliğin olmadığı tekillik çeşididir.

Karmaşık analizde kalıntı veya rezidü, bir meromorf fonksiyonun bir tekillik etrafındaki çizgi integrallerinin davranışını açıklayan bir karmaşık sayıdır. Kalıntılar oldukça kolay bir şekilde hesaplanabilir ve bilindiklerinde kalıntı teoremi sayesinde çok karışık gerçel integrallerin belirlenmesi yolunu açarlar.

Matematikte, Hartogs teoremi, çok değişkenli karmaşık analizde birden fazla karmaşık değişkene sahip holomorf fonksiyonların analitik devamlarıyla ilgili olan ve karmaşık analizin bir değişkenli fonksiyonlar teorisinde varolmayan bir sonuçtur.

<span class="mw-page-title-main">Meromorf fonksiyon</span>

Meromorf fonksiyon, özellikle karmaşık analizde, bir fonksiyon çeşidi. Daha açık bir ifadeyle, meromorf fonksiyon, karmaşık düzlemin açık bir D kümesi üzerinde fonksiyonun kutup noktalarından oluşan belli bir korunmalı noktalar kümesi haricinde D 'nin geriye kalan diğer noktalarının tümünde holomorf olan fonksiyondur. Meromorf kelimesi Yunanca "kısım", "parça" anlamına gelen “meros” ve "tüm", "bütün" anlamına gelen “holos” kelimelerinin tezat bir birleşiminden ortaya çıkmış bir kelimedir.

Matematiğin bir alt dalı olan karmaşık analizde, holomorf bir f fonksiyonunun sıfırı veya kökü f(a) = 0 eşitliğini sayılan karmaşık a sayısına verilen bir addır. Başka bir deyişle, holomorf fonksiyonların sıfır değerini aldığı karmaşık sayılara o fonksiyonun sıfırları adı verilir.

<span class="mw-page-title-main">Maksimum ilkesi (karmaşık analiz)</span>

Matematiğin bir alt dalı olan karmaşık analizde maksimum ilkesi veya maksimum modülüs prensibi veya en büyük mutlak değer teoremi holomorf bir fonksiyonunun tanım kümesi olan bir bölgede fonksiyonun mutlak değeri olan 'nin yerel bir maksimuma sahip olamayacağını belirten önemli bir sonuçtur.

Holomorf fonksiyonlar karmaşık analizin temel çalışma araçlarından biridir. Bu fonksiyonlar karmaşık düzlemin yani C'nin açık bir altkümesinde tanımlı, bu altkümedeki her noktada karmaşık anlamda türevli ve aldığı değerler yine C içinde olan fonksiyonlardır.

<span class="mw-page-title-main">Casorati-Weierstrass teoremi</span>

Karmaşık analizde Casorati-Weierstrass teoremi, holomorf fonksiyonların esaslı tekillikler civarındaki olağanüstü davranışlarını açıklayan bir ifadedir. Teorem, Karl Theodor Wilhelm Weierstrass ve Felice Casorati'ye atfen isimlendirilmiştir.

Matematikte, çok değişkenli karmaşık analiz ya da çok boyutlu karmaşık analiz, karmaşık koordinat uzayı de ya da bu uzayın altkümeleri üzerinde tanımlı ve karmaşık değer alan fonksiyonların teorisi; yani, birden fazla karmaşık değişkenli fonksiyonların teorisidir.