İçeriğe atla

Kablosuz enerji

Kablosuz enerji ya da kablosuz enerji transferi, insan yapımı iletken olmadan güç kaynağından elektriksel alana elektrik transferidir. Kablosuz transfer kabloların bağlantısının uygunsuz, tehlikeli ve imkânsız olduğu durumlarda kullanışlıdır. Kablosuz enerji transferindeki problem kablosuz telekomünikasyondan örneğin radyo gibi farklıdır. İkinci olarak, alınan enerjinin yayılması sadece sinyal çok az olduğunda kritik olur. Kablosuz enerji için yeterlilik çok önemli bir parametredir. Enerjinin büyük çoğunluğu üretilen kaynak tarafından alıcı ya da alıcılara sistemi ekonomik yapmak için ulaşmasında gönderildi. En yaygın kablosuz elektrik transfer şekli manyetik resonator tarafından direkt indüksiyon olarak kullanılmasıdır. Mikrodalgalar ya da lazer formunda elektromanyetik radyasyon ve doğal medya sayesinde elektriksel iletkenlik düşündüğümüz metotlardır.

Elektrik enerji transferi

Elektrik akımı iletken madde boyunca, tel gibi, elektrik enerjisi taşınır. Elektrik akımı devreden geçerken kondüktörün yalıtkan çevresinde bir elektrik alanı vardır. Doğrudan akım devresinde, eğer akım sürekliyse, alanlar sabittir, iletken maddenin çevresindeki boşluğun içinde gerilmenin bir şartı vardır, bunlar depolanan enerji ve manyetik enerjidir, sıkıştırılmış yay ya da hareket eden kütle depolanan enerjiyi temsil eder. Alternatif akım devresinde, alanlar da alternatiftir, bunlar, her yarım dalga boyunca ve voltajın, manyetik ve elektrik alan iletken madde de başlar ve ışık hızıyla boşluğun içinden dışarı doğru gider. Bu alternatif alanın olduğu yerde başka bir iletken madde üzerinde çarpar böylece voltaj ve akım uyarılmış olur.

Devrenin elektrik şartlarındaki herhangi bir değişme, internal ya da external devrede depolanan enerji manyetik elektrik alanın ayarlanmasını sağlar, bunlara geçici dalga denir. Geçici dalga kondansatörlerin devre boyunca boşalmasının genel karakteridir. Kondansatörler ile ilgili düzenek devre boyunca deşarj olmalarıdır bu nedenle mühendislik için çok önemlidir. En önemli sonucu elektrik devresinde yüksek voltaj ve yüksek frekans sorunudur.

Elektromanyetik indüksiyon akımı frekansı üreten kondüktörde akım ve voltajın şiddetini orantıları yüksek frekansta daha şiddetli etki eder. Enerji transfer edilir akımı üreten kondüktörden herhangi bir ikincil kondüktöre. Ana kondüktördeki bir kısım enerji ikincil kondüktördeki boşluğun içine indüktif geçer ve ana kondüktörden enerji hızlıca azalır. Yüksek frekanstaki akım kondüktörde uzun yol alamazlar fakat enerjilerin hızlıca transfer ederler yakındaki kondüktöre. Yüksek indüksiyon yüksek frekansla sağlanır. Bunun açık nedeni yüksek frekans bozuklukları yayılmada alternatif akım sisteminin düşük frekans enerjili yayılmasıyla açıklanır. İndüktif etkileme enerjinin devreden devrenin boşluğuna transfer edilmesinde yüksek frekansta daha baskın olur. Enerji hızlıca azalır ve akım devrede biter, basit bir düzenektir. Elektriksel gücün iletimi ve dağıtımında, en önemlisi kondüktörün içindeki düzenek ve kondüktörün elektriksel alanı sadece yakından gözlemlenebilir. Bunun tersine, radyo iletişimde elektriksel güç kullanımı sadece kondüktörün dışındaki elektrik ve manyetik alandır, bu elektromanyetik radyasyon alanıdır, mesajın iletilmesi önemli olan, kondüktör içindeki düzenek kullanılmaz.

Elektriksel yük kondüktörün ürettiği manyetik alanda yer değiştirir ve elektriksel güç hattı oluşur. Kondüktördeki manyetik alan merkeze doğruyken ya da hemen hemen bu doğrultuda, maksimumdur. Buna, ferromanyetik alan kondüktörde doğru açıya yönelmesi denir. Elektriksel alanın, yönü radyal olunca maksimum elektriksel alan oluşur. Elektrik alanın bileşenleri yönü kondüktörde radyal eğilimdedir.

Devrenin elektrik alanı üstünde enerji akışı 3 tane doğru açıya sahiptir.

  1. Manyetik alan, kondüktörle merkezi ortak olan,
  2. Elektrik gücünün hattı, kondaktörle radyalken,
  3. Enerji eğimi, kondüktörle paralelken

Elektrik devresi nerede birkaç iletken ile oluşuyorsa, kondüktörlerin elektrik alanı birbirlerine eklenir ve bileşke manyetik alan hattı oluşur ve bu hatlardaki elektriksel güç ortak merkezli ve ayrı ayrı radyal değildir, iletkenin hemen yanındaki hat dışında. Paralel kondüktörler arasında onlar çevrelerine eşleniktir. Ne kondüktördeki enerji tüketimi, ne de manyetik alan, nede elektrik alan, devrenin enerji akışıyla orantılı değildir. Ancak, manyetik alanın yoğunluğunun ürünü ve elektrik alanın yoğunluğu enerjinin ya da gücün akışıyla orantılıdır ve güç bu yüzden i ve e bileşenlerinin ürünü içinde kararlıdır, elektriksel alan ve manyetik alanın yoğunluğu ayrı ayrı orantılı seçilirler. Bu bileşenlere manyetik alana orantılı olan elektriksel güç faktörü olarak ifade edilen akım denir ve diğer bileşenler, voltaj denen, elektriksel alana orantılı elektriksel güç faktörü olarak ifade edilir. Radyo iletişimde iletken antenin elektrik alanı radyo dalgalarını uzay boşluğunca üretir ve alıcının üzerine çarptığı elektrik etki ve manyetik etki sayesinde gözlemlenir. Radyo dalgaları, mikrodalga, kızılötesi radyasyonu, görünebilir ışınlar, mor ötesi, x ışınları ve gamma ışınları aynı elektromanyetik radyasyon düzeyinde gösterilir, diğerlerinden farklı olanı sadece titreşim frekansıdır.

Elektromanyetik ürünlenim

Elektromanyetik ürünlenim tarafından enerji transferi tipik manyetiktir fakat kapasitif bağlantıda da başarılabilir.

Elektromanyetik ürünlenim yöntemi

Elektrodinamik ürünlenimin kablosuz enerji transfer tekniği dalga boyunun kullandığı 1/6 mesafe alanının yakınına denir. Bu alandaki enerji ışıma yapmaz fakat bazı ışıma kaybı meydana getirir. Buna ek olarak, sık sık direnç kayıpları vardır. Elektrodinamik ürünlenimle, elektrik akımı ana bobinde kayarak manyetik alan oluşturur ve ikincil bobine akımın ulaşması sağlanır. Bağlantı yüksek verimlilik için sıkı olmalıdır. Ana bobindeki uzaklık artarsa, çok fazla manyetik alan kaybı ikincil bobinde olur.

Elektriksel dönüştürücünün olayı basit bir kablosuz enerji transferidir. Birincil ve ikincil devreler direkt olarak bağlanmazlar. Enerji transferin süresinde bilinen ortak giriş yer alır. Asıl işlem ana voltajın yükselmesi ya da azalması adımıdır ve elektriksel izolasyondur. Cep telefonu ve şarjlı diş fırçası bataryalı şarj olurlar ve elektriksel güç dağılımı dönüştürüşü bu kullanıma örnektir. En önemli sorun bu kablosuz transfer küçük ölçüdedir. Alıcı direkt yakınındaki iletken maddeye hemen iletmeli daha fazla verimli olması için. Rezonansın uygulaması iletişimin menzilini artırabilir. Rezonans çifti kullanıldığında, iletken madde ve alıcı aynı frekansta ayarlıdır. Bu dalgalar sinüs eğrisi ve sinüs eğrisini tam tersi gibi dalgalar yayarak etkinliği artırırlar. Bu yolla karşılıklı olarak önemli güç transfer edilebilir. İletken ve alıcı bobin genellikle tek katlı mıknatıslıdırlar ya da üretece paralel spiraldirler, böylece alıcı elementle aynı frekansta olabilecekler.

Sık kullanılan resanotörler gelişmiş elektrodinamik indüksiyon elektrikli cihazlar, cep telefonu, lap top, gibi araçları şarj etme imkânı sağladı. Rezonans kablosuz şarj ve alıcı modülü ençok verimlilik transferinde kullanıldı. Bu yaklaşım bütün evrensel cihazlarda kullanıldı.

Elektrostatik ürünlenim yöntemi

Elektrostatik ürünlenim ya da kapasitif bağlantı yalıtkan madde boyunca elektriksel enerjinin geçişine denir. İletken düzlem üzerinde yükseltmesi elektrik alanın düşmesi ya da diferansiyel direnç iki ya da daha fazla yalıtımlı kutup, plaka, elektrot ya da düğümlerle sağlanır. Elektriksel alan bu plakalar tarafından yüksek potansiyelle oluşturuldu, yüksek frekans alternatif akım gücünü sağlar. Yükseltilmiş iki kutup ve çalışan cihaz arasındaki direnç voltaj bölücü oluşturur.

Elektrik enerji iletimi alıcı cihaz tarafından kullanılabilen elektrostatik indüksiyonun anlamıdır. Örneğin, kablosuz lamba. Nikola Tesla alternatif elektrik alanında bize kablosuz bir lambayı yakıldığını göstermiştir.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

<span class="mw-page-title-main">Elektrik</span> elektrik yükünün varlığı ve akışı ile ilgili fiziksel olaylar

Elektrik, elektrik yüklerinin akışına dayanan bir dizi fiziksel olaya verilen isimdir. Elektrik sözcüğü Türkçeye Fransızcadan geçmiştir. Elektriğin Türkçe eş anlamlısı çıngı sözcüğüdür. Ayrıca Anadolu ağızlarında elektrik anlamında yaldırayık sözcüğü tespit edilmiştir. Elektrik, pek çok farklı şekillerde var olabilir. Örneğin, yıldırımlar, durgun elektrik, elektromanyetik indüksiyon ve elektrik akımı gibi. Ek olarak, elektriğin elektromanyetik radyasyon, radyo dalgaları gibi oluşumları olduğu bilinmektedir.

<span class="mw-page-title-main">Transformatör</span> Elektrik-elektronik devre elemanı

Transformatör ya da kısa adıyla trafo iki veya daha fazla elektrik devresini elektromanyetik indüksiyonla birbirine bağlayan bir elektrik aletidir. Bir elektrik devresinden diğer elektrik devresine, enerjiyi elektromanyetik alan aracılığıyla nakletmektedir. Transformatörler elektrik enerjisinin belirli gücünde gerilim ve akım değerlerinde istenilen değişimi yapan makinelerdir. Transformatör, elektrik enerjisini bir elektrik devresinden başka bir devreye veya birden fazla devreye aktaran bileşendir. Transformatörün herhangi bir bobinindeki değişen akım, transformatörün çekirdeğinde değişken bir manyetik akı üretmektedir. Oluşan akım, aynı çekirdek etrafına sarılmış diğer bobinler boyunca değişen bir elektromotor kuvveti indüklemektedir. Elektrik enerjisi, iki devre arasında metalik (iletken) bir bağlantı olmadan ayrı bobinler arasında aktarılabilmektedir.

<span class="mw-page-title-main">Elektrik akımı</span> elektrik yükü akışı

Elektrik akımı, elektriksel akım veya cereyan, en kısa tanımıyla elektriksel yük taşıyan parçacıkların hareketidir. Bu yük genellikle elektrik devrelerindeki kabloların içerisinde hareket eden elektronlar tarafından taşınmaktadır. Ayrıca, elektrolit içerisindeki iyonlar tarafından ya da plazma içindeki hem iyonlar hem de elektronlar tarafından taşınabilmektedir.

<span class="mw-page-title-main">Alternatör</span> Mekanik enerjiyi alternatif akıma çeviren aygıt.

Alternatör, mekanik enerjiyi alternatif akım biçiminde elektrik enerjisine dönüştüren bir elektrik jeneratörüdür. Maliyet ve basitlik nedenleriyle, çoğu alternatör sabit armatürle dönen manyetik alan kullanır. Bazen, sabit bir manyetik alanlı doğrusal bir alternatör veya dönen bir armatür kullanılır. Prensipte, herhangi bir AC elektrik jeneratörüne alternatör denebilir, ancak genellikle terim otomotiv ve diğer içten yanmalı motorlar tarafından tahrik edilen küçük dönen makineleri ifade eder.

<span class="mw-page-title-main">Röle</span> tamamen izole edilmiş ikinci bir devre tarafından bir elektrik devresinin açılıp kapanmasına izin veren elektrikli cihaz

Röle, elektriksel olarak çalıştırılan, elektromanyetik bir anahtardır. Yani üzerinden akım geçtiği zaman çalışan devre elemanıdır. Röle; bobin, palet ve kontak olmak üzere üç bölümden meydana gelir. Bobin kısmı rölenin giriş kısmıdır. Palet ve kontak kısmının bobin ile herhangi bir elektriksel bağlantısı yoktur. Röle, tek veya çoklu kontrol sinyalleri için birçok giriş terminali ve birçok çalışma kontağı terminalinden oluşur. Röle, birden çok kontak düzenlemesinde, örneğin; kontakları temas ettirme, kontakların temasını kesme veya bu iki durumun kombinasyonları gibi herhangi bir sayıda kontaklı olabilir.

<span class="mw-page-title-main">Elektrik üreteci</span> Mekanik enerjiyi elektrik enerjisine dönüştüren aygıt

Elektrik üretiminde jeneratör, harekete dayalı gücü veya yakıta dayalı gücü harici bir devrede kullanılmak üzere elektrik gücüne dönüştüren bir cihazdır. Mekanik enerji kaynakları arasında buhar türbinleri, gaz türbinleri, su türbinleri, içten yanmalı motorlar, rüzgar türbinleri ve hatta el krankları bulunur. İlk elektromanyetik jeneratör olan Faraday diski, 1831 yılında İngiliz bilim adamı Michael Faraday tarafından icat edildi. Jeneratörler elektrik şebekeleri için neredeyse tüm gücü sağlar.

<span class="mw-page-title-main">İndüktans</span>

İndüktans elektromanyetizma ve elektronikte bir indüktörün manyetik alan içerisinde enerji depolama kapasitesidir. İndüktörler, bir devrede akımın değişimiyle orantılı olarak karşı voltaj üretirler. Bu özelliğe, onu karşılıklı indüktanstan ayırmak için, aynı zamanda öz indüksiyon da denir. Karşılıklı indüktans, bir devredeki indüklenen voltajın başka bir devredeki akımın zamana göre değişiminin etkisiyle oluşur.

<span class="mw-page-title-main">Radyo dalgaları</span> Radyo Dalgaları (Radio Waves)

Radyo dalgaları, radyo frekansı ile gerçekleşen elektromanyetik dalgalardır. Tel gibi somut bağlantılar kullanmadan, atmosfer içerisinde veri taşınmasına olanak tanırlar. Radyo dalgalarını diğer elektromanyetik dalgalardan ayıran özellikleri görece uzun dalgaboylarıdır.

<span class="mw-page-title-main">İndüktif kuplaj</span>

Elektrik mühendisliği'nde, iki iletken'in bir telden geçen akımdaki değişimin, elektromanyetik indüksiyon yoluyla diğer telin uçları boyunca bir voltajı indükleyecek şekilde yapılandırıldıklarında, endüktif olarak bağlı veya manyetik olarak bağlı olduğu söylenir. İlk telden geçen değişen akım, Ampere'nin devre yasası'na göre etrafında değişen bir manyetik alan yaratır. Değişen manyetik alan, Faraday'ın indüksiyon yasası'na göre ikinci telde bir elektromotor kuvvet (EMF) voltajı'na neden olur. İki iletken arasındaki endüktif bağlantı miktarı, karşılıklı endüktans'larıyla ölçülür.

<span class="mw-page-title-main">Alternatif akım</span>

Alternatif akım, genliği ve yönü periyodik olarak değişen elektriksel akımdır. En çok kullanılan dalga türü sinüs dalgasıdır. Farklı uygulamalarda üçgen ve kare gibi değişik dalga biçimleri de kullanılmaktadır. Bütün dalgalar birbirlerine elektronik devreler aracılığı ile çevrilebilir. Devrede kondansatör, diyotlar, röleler ile bu çevrim yapılabilir.

<span class="mw-page-title-main">Anahtarlamalı güç kaynağı</span>

Anahtarlamalı güç kaynağı olarak adlandırılan anahtarlamalı modlu güç kaynağı, elektrik gücünü verimli şekilde dönüştürmek için anahtarlama regülatörü içeren elektronik bir güç kaynağıdır. Anahtarlamalı güç kaynağı ya da İngilizce özgün adının kısaltmasıyla SMPS, 1960'lı yıllarda doğrusal güç kaynaklarının çalışma veriminin düşük olması ile kullanılmaya başlanmıştır.

Henri elektromanyetikte indüktans birimidir. Birim adını Amerikalı bilim insanı Joseph Henry'dan (1797-1878) almıştır. Birimin orijinal hali henry olup Türkiye'de telaffuz kolaylığı açısından henri olarak söylenmektedir. Birim küçük harfle yazılmakta, ancak H şeklindeki kısaltması büyük harfle yapılmaktadır. Ast katı ve üst katı açısından diğer birimlerin tabi olduğu kurallara tabidir. Uygulamada, özellikle ast katları kullanılmaktadır.

<span class="mw-page-title-main">Bobin</span> Elektrikli bileşen

Bobin ya da makara, içinden elektrik akımı geçebilen, yalıtılmış tel ile bu telin sarılı bulunduğu silindirden oluşan aygıt.

Elektrik dağıtımı elektriğin son kullanıcıya ulaştırılmasıdır. Bir dağıtım sisteminin şebekesi elektriği iletim sisteminden tüketiciye ulaştırır. Örnek olarak, şebeke; trafo merkezleri, orta gerilim hatları, dağıtım merkezleri, dağıtım transformatörleri, alçak gerilim dağıtım hatları ve bazen ölçü devrelerini kapsar.

Elektromanyetik indüksiyon, değişen bir alana maruz kalmış bir iletkenin üzerindeki potansiyel fark (voltaj) üretimidir.

<span class="mw-page-title-main">Döngü anten</span>

Döngü veya çerçeve anten, uçları dengeli bir iletim hattına bağlı olan döngü şeklinde bir kablo, boru sistemi veya diğer elektriksel iletkenden oluşan bir radyo antenidir. Fiziksel tanımı içerisinde iki belirgin anten tasarımı vardır: boyutu bir dalga boyundan çok daha küçük olan küçük döngü anteni veya çevresi yaklaşık olarak dalga boyuna eşit olan salınım yapan döngü anteni.

Elektromanyetik kuramın tarihi özellikle aydınlatma alanındaki atmosferik elektrik ile ilişkilendirilmiş eski ölçümlerle başlar. İnsanlar elektrik hakkında çok az bilgiye sahipti ve bilimsel olarak bu doğa olaylarını açıklayamıyorlardı. 19. yüzyılda elektrik kuramının tarihi ve manyetizma kuramının tarihi kesişti. Elektriğin hareket halinde olduğu her yerde manyetizmanın varlığından da söz edilebileceği için elektriğin manyetizma ile birlikte ele alınması gerektiği çok açıktı. Manyetizma, manyetik indüksiyon düşüncesi geliştirilmeden tam olarak açıklanamadı. Elektrik, elektrik yük düşüncesi geliştirilmeden tam olarak açıklanmadı.

Elektromanyetik kuvvetlerin insan anlayışının zaman çizelgesi olduğu elektromanyetizma zaman çizelgesi, iki bin yıl öncesine dayanmaktadır. Bu çizelge, elektromanyetizma, ilgili teoriler, teknoloji ve olayların tarihinin içinde oluşumlarını listeler.

<span class="mw-page-title-main">Yüzey katmanı etkisi</span>

Yüzey katmanı etkisi ; akım yoğunluğu iletkenin yüzeyinin yakınında en büyük olacak şekilde bir iletken içinde dağıtılan bir alternatif elektrik akımı (AC) eğilimidir ve iletkenin derinliklerinde azalır. Elektrik akımı, iletkenin dış yüzeyi ile yüzey derinliği denilen bir derinlik arasında ağırlıklı olarak akar. Yüzey etkisi yüzey derinliğinin küçük olduğu yerlerde yüksek frekanslar için iletkenin direncinin artmasına sebep olur. Böylece, iletkenin kesitinin etkisini azaltır. Deri etkisi alternatif akımdan kaynaklanan değişen manyetik alanın neden olduğu Eddy akımına karşıt kaynaklanmaktadır. 60 Hz'de bakır'ın yüzey derinliği yaklaşık 8,5 mm. Yüksek frekanslarda yüzey derinliği çok daha küçük olur. Yüzey etkisi nedeniyle artan AC direnç özel dokuma litz tel kullanılarak hafifletilebilir. Çünkü büyük bir iletkenin iç akımını çok az taşır. Ayrıca bu tür boru gibi boru şeklinde iletkenler ağırlık ve maliyet tasarrufu için kullanılabilir.