İçeriğe atla

Kızılötesi fotoğraf

Bir ağacın kızılötesi filtre ile çekilmiş görüntüsü (üstte) ve normal görüntüsü (altta)

Kızılötesi fotoğraf, kızılötesi ışınlara duyarlı sensörlerle, kamera filtreleriyle veya filmlerle pozlanmış fotoğraflara denir.

Kızılötesi fotoğrafta, sensörler ve filtreler normal fotoğraflardan farklı olarak, görünmeyen kızılötesi ışığı algılayabilirler ya da filtrelenebilirler. Bu özellik, özellikle manzara ve portre fotoğraflarında farklı bir görsellik yaratır.

Tanımlar

Işık

Işık çok hızlı hareket eden elektromanyetik dalgadır. Bu elektromanyetik dalganın boyu 6000 km ile 0,0005 nm arasında değişebilmektedir. Işık dalga boylarının tamamının gözümüz tarafından algılanması mümkün değildir. Işığın gözümüzün algılayabildiği (gördüğü) bölümüne görünür spektrum denir. Bu bölge, 400 nm ile 700 nm dalga boyu ile sınırlıdır.[]

Gün ışığı beyaz renkte bir ışıktır. Homojen bir yapıda değildir. Farklı dalga boyundaki ışıklar bir araya gelerek gün ışığını meydana getirir. Eğer gün ışığı bir prizmadan geçirilecek olursak gün ışığını oluşturan ve her biri farklı dalga boyundaki ışıklara ve renklere ayrılır. Bu her bir fark dalga boyundaki ışıklar bizim renk diye adlandırdığımız kavramı meydana getirirler. Bu renkli ışık demetleri tekrar birleştirilirse beyaz gün ışığı meydana gelir. Beyaz ışığın, kendisi oluşturan farklı dalga boyundaki renkli ışıklarına ayrılmasına ışık tayfı, renk tayfı denir.

Işık tayfı incelendiği zaman, mordan kırmızıya doğru çeşitli renkler oluşur. Bu renkler alt alta sıralanırsa beyaz ışık şu renklerin birleşiminden oluşur. Sıralama en büyük dalga boyundan küçüğe doğrudur.

Kırmızı 700 nm
Turuncu
Sarı
Yeşil
Mavi
Lacivert
Mor 400 nm

Gün ışığının bileşiminde en küçük dalga boyuna sahip olan ışıma 400 nm ile mordur. 400 nm den daha küçük dalga boyuna sahip ışımaya morötesi (UV) adı verilir.

UV ile gün ışığı arasından sınır tam olarak 400 nm değildir. 350 nm ye kadar olan UV ışımalar göz ile de görülebilir. Kesin bir sınır yoktur. Bundan dolayı fotoğrafçılıkta UV ışımalar olumsuz etkileri engellemek için UV filtreler kullanılır.

En büyük dalga boyu ise 700 nm ile kırmızıdır. 700 nm den daha büyük dalga boyuna sahip olan ışımalara da IR infrared yani kızılötesi adı verilir. 700 nm ile 1350 nm arasındaki bölgeye de infrared bölgesi denir.

Netleme

IR Işınlarının film düzlemindeki odak noktası, görünür ışığınkine oranla daha gerisine düşer. IR filmlerle çalışırken, netsizlik oluşur. Bunu gidermek için net alan derinliği skalasının üzerinde ya kırmızı bir nokta veya R harfi ile simgelenmiş net düzeltme noktası vardır.

Netlik yapıldıktan sonra bulunan netlik noktası. R veya kırmızı nokta ile simgelenmiş net düzeltme noktasına kaydırılır. Kısık diyafram ile çalışmak da bir çözüm olmakla beraber, en doğru yöntem net düzeltmesinin yapılmasıdır. Özellikle geniş açı ile çalışırken kısık diyafram yerine net düzeltmesi tercih edilmelidir. IR filmde en fazla keskinliği 5𝑓, 6𝑓 ve 8𝑓 değerleri verir.[]

Filtreleme

IR film, Infrared ışığa özel bir duyarlılığı olmasına rağmen, temelde klasik siyah beyaz filmler gibi pankromatik bir filmdir. Gün ışığı ve UV'ye de duyarlıdır. IR'ye özel filtreler kullanılmaz ise IR filmde elde edilecek görüntülerin diğer (klasik siyah beyaz film) filmlerle elde edilen görüntülerden farkı yoktur.

Özel IR etkilerine sahip görüntüler elde edilmek istenirse film üzerine düşecek olan görünür bölge ışınlarının (Gün ışığı) ve UV ışınlarının bir filtre yardımıyla film üzerine düşmesi engellenmelidir. Kısacası IR filmin yalnız IR'yi geçirebilen özel filtrelerle elde edilen IR ışınlarıyla pozlanması gerekmektedir. Pek çok fitre kullanılmakla beraber IR etkilerini kademeli olarak verebilen 25A, 29, 70 kodlu (Kodak filtre sistemine göre) koyu kırmızı filtreler ve (Bu filtreler koyuluk derecelerine göre kademeli olarak IR ışınlarını geçirirler) Yalnız IR ışınlarının geçmesine izin veren, opak görünüşlü, koyu kırmızı filtrelere göre daha koyu olan, kodak filtre sistemine göre 87, 87C, 88A, 89B kodlarıyla bilinen filtreler kullanılmaktadır. Kullanım kolaylığı açısından bu filtrelerin içinden 25A koyu kırmızı filtreyi önerebiliriz. Diğer filtrelere oranla (87, 87C, 88A, 89B) daha pratik kullanımı ucuz ve kolay bulunabilirliği yönünden daha avantajlıdır. IR etkilerinde çok fazla kayıp olmaksızın verebilmektedir. 87, 87C, 88A, 89B, filtreleri 25A koyu kırmızı filtrelere göre çok pahalı (30 $) ve kullanım olarak çok pratik değildir. Opak görünüşlü ve çok koyu olmalarından dolayı netlemede problem yaratmakta ve filtre faktörleri çok fazla olduğu için (8x ve 20x civarında,) Enstantane değerleri çok düşmektedir.[]

Pozlama

Fotoğraf makinelerinin ışık ölçüm sistemleri gün ışığına göre ayarlanmıştır. Gün ışığının haricinde bir miktar infrared ölçebilmektedir. Ama IR'ye duyarlılıkları düşüktür. Bu yüzden filmi üreten firma tam anlamıyla bir ASA değeri verememektedir. Başlangıçta test edilip, kullanıcının kendi ASA değerini bulabilmesine olanak veren basamak bir ASA değeri prospektüslerde bulunmaktadır. Denenmiş ve iyi sonuç verebilen bir ASA değeri vermek mümkündür. Bir makinenin ASA ayar düğmesini 200 ASA değerine getirip eksi 1 ve eksi 2 değerlerinde çekim yapılabilir. Filmler yıkandıktan sonra sonuçlar değerlendirilip kamerarın tahmini değerleri bulunabilir. Buna rağmen alınabilecek sonuçlar iyi olmayabilir. (Kızılötesinin gün ışığı içindeki oranı günün değişik saatlerini ve hava koşullarına bağlı olarak değişebilmektedir. Bulutlu havalarda infrared bulutlardan geçebilmektedir. Bu sebepten dolayı gökyüzünün fazla olduğu karelerde patlamalar olur.)[]

Bunun önüne geçmek için bulduğunuz standart ASA değerinde çekim yaparken, ölçülen değerin alt ve üst ölçüm değerlerini de çekmeniz tavsiye edilmektedir.[]

Film geliştirme

Filmlerin makinaya takılması pozlanmış filmin makineden çıkarılması ve geliştirilmesi (banyo işlemi) tamamen karanlık bir ortamda yapılmalıdır. IR filmlerin (Konica ve ilford SFX hariç) Antihalo tabakası yoktur. Bu özelliğinden dolayı film oldukça incedir. Koruyucu kadife ve film makarasının kenarından sızan ışıklar filmin sislenmesine sebep olmaktadır. Bütün pankromatik filmler gibi geliştirme işlemi için film spirale karanlıkta sarılmalıdır. Geliştirme işleminin yapılacağı tanklar çelik olmalıdır. Çelik tanklar IR yi sızdırmamaktadır. Plastik ve bakalit tankların IR yi sızdırabildiği söylenmektedir. Plastik veya bakalit tanklarla çalışılacaksa test edilmelidir. Eğer test etmeyi göze almazsanız daha basit ve pratik bir yol ise, plastik ve bakalit tankların dışı parlak yüzeyi dışa gelecek biçimde Alüminyum Folyo ile kaplayarak IR geçirmez hale getirebilirsiniz. Özel bir geliştirici gerekmektedir.[]

ID II, D 76 ile 20 derecede 11 dakika normal kontrastlı sonuçlar vermektedir. Microdol X ile sulandırılmamış ile 20 derecede 13 dakika yumuşak kontrast ve ince grenli sonuçlar elde edilir. Daha kontraslı sonuçlar elde etmek içinse film sulandırılmamış Hc110, D 19 banyoları ile 20 derecede 6 dakika geliştirilmelidir.[]

Geliştirmenin diğer aşamalarının klasik SB filmlerin farkı yoktur. Arzu edilirse stop banyosu kullanılır. Fix aşaması SB filmler gibidir:

Stok ID 11 D76 11 dakikada, normal kontrastlı
Stok Mikrodol x 13 dakikada, düşük kontrast-ince gren
Stok HC 110 D19 6 dakikada, yüksek kontrast sonuçlar alınabilir.

Kullanım alanları

Pratikte pek çok kullanım alanı vardır. Yalnız fotoğraf amaçlı kullanımı diğer kullanım amaçlarına göre çok küçük bir bölümü tutar. Bunların dışında:

  • Orman, deniz, karlı dağ, çöl ve bozkırda havadan geniş bölge arama kurtarma
  • Binalarda monte edilmiş elektrik malzemesinde yangına sebep olabilecek sıcak noktaların keşfi,
  • Bina sigortacılığında elektrik yangını riskinin olmadığının belgelenmesi
  • Kararmış, silinmiş ve okunamayan belgelerin okunmasında,
  • Resimlerde verniğin altındaki ilk katın incelenmesinde (ünlü resimlerin taklitlerinin ortaya çıkarılmasında),
  • Yapay kamuflajların ortaya çıkarılmasında,
  • Büyük ormanlık alanlarda, hasta ağaçların tespiti ve hastalığın yayıldığı alanların tespitinde,
  • Bitki örtüsünün incelenmesinde,
  • Tarım ürünlerinin tahmini rekolte miktarının tayininde kullanılır.[]

Normal fotoğrafa göre kızılötesi fotoğraftaki görsel farklar

  • Sağlıklı bitkilerin yaprakları gün ışığını emer, Infrared olarak yansıtırlar ve görüntüde yeşillikler beyaz renkte gözükür.[]
  • Mavi gökyüzü kızılötesi ışınları emdiği için siyah çıkar.[]
  • Su kütleleri kızılötesi ışınları emer ve siyah çıkarlar.[]
  • Bulutlar kızılötesi ışınları geçirirler ve beyaz renginde bir değişim olmaz, kendine özgü gren verirler.[]

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

Elektromanyetik tayf veya elektromanyetik spektrum (EMS), evrenin herhangi bir yerinde fizik kurallarınca mümkün kılınan tüm elektromanyetik radyasyonu ve farklı ışınım türevlerinin dalga boyları veya frekanslarına göre bu tayftaki rölatif yerlerini ifade eden ölçüt. Herhangi bir cismin elektromanyetik tayfı veya spektrumu, o cisim tarafından çevresine yayılan karakteristik net elektromanyetik radyasyonu tabir eder.

<span class="mw-page-title-main">Renk</span> görsel algının bir özelliği

Renk ya da tüs, ışığın gözün ağ katmanına değişik biçimde ulaşması ile ortaya çıkan bir algılamadır. Bu algılama, ışığın maddeler üzerine çarpması ve kısmen soğurulup kısmen yansıması nedeniyle çeşitlilik gösterir ki bunlar renk tonu veya renk olarak adlandırılır. Tüm dalgaboyları birden aynı anda göze ulaşırsa bu ak, hiç ışık ulaşmazsa kara olarak algılanır. İnsan gözü 380 nm ile 780 nm arasındaki dalga boylarını algılayabilir. Bu sebepten elektromanyetik spektrumun bu bölümüne görünür ışık denir. Renkler için genelde kulak ile duyulan ince ve kalın ses analojisi yapılsa da, ses algısının aksine aynı anda gelen ışık frekansları değişik kanallardan algılanamaz, dolayısıyla aynı anda ince ve kalın sesleri birbirine karıştırmadan duyulmasına karşın göz için bu "çok seslilik" söz konusu olmadığından, değişik ışık frekanslarının sadece kombinasyonları algılanabilir. Bu prensibi açıklamak veya pratik uygulamalarda kullanmak için çeşitli renk modelleri geliştirilmiştir.

<span class="mw-page-title-main">Işık</span> elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon

Işık veya görünür ışık, elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon. Görünür ışık genellikle 400-700 nanometre (nm) aralığında ya da kızılötesi ve morötesi arasında 4.00 × 10−7 ile 7.00 × 10−7 m dalga boyları olarak tanımlanır. Bu dalga boyu yaklaşık 430-750 terahertz (THz) frekans aralığı anlamına gelir.

<span class="mw-page-title-main">Teleskop</span> uzaydan gelen her türlü radyasyonu alıp görüntüleyen, astronomların kullandığı, bir rasathane cihazı

Teleskop veya ırakgörür, uzaydan gelen her türlü radyasyonu alıp görüntüleyen astronomların kullandığı, bir rasathane cihazıdır. 1608 yılında Hans Lippershey tarafından icat edilmiştir ve 1609 yılında Galileo Galilei tarafından ilk defa gökyüzü gözlemleri yapmakta kullanılmıştır. Uzaydaki cisimlerden yansıyarak veya doğrudan gelen görülen ışık, ultraviyole ışınlar, kızılötesi ışınlar, röntgen ışınları, radyo dalgaları gibi her türlü elektromanyetik yayınlar; kozmos hakkında bilgi toplamak için çok gerekli kanıtlardır. Bu kanıtlar, klasik manada optik teleskoplarla ya da çok daha modern radyo teleskoplarla incelenir.

<span class="mw-page-title-main">Infrared Data Association</span>

Infrared Data Association (ing.) kısa adıyla IrDA, bir çeşit kızılötesi iletişim teknolojisidir. IrDA teknolojisiyle çalışan en tanınmış elektronik ürün uzaktan kumandadır.

<span class="mw-page-title-main">Spektrum</span>

Spektrum ya da tayf, renklerin, seslerin, elektromanyetik dalgaların ya da diğer fiziksel gerçeklerin, belli bir değer kümesi ile sınırlanmadan birbiri ardına süreklilik içinde sonsuz değişmesi durumudur.

<span class="mw-page-title-main">Termal kamera</span> Termal kamera, normal şartlar altında göremediğimiz ısı enerjisini görüntüleyebilen kameradır.

Termal kamera, görüntüleme yöntemi olarak gözle görülmeyen IR enerjiyi (ısıyı) esas alan ve görüntünün genel yapısını IR enerjiyi göre oluşmuş renkler ve şekillerin belirlendiği görüntüleme sistemidir. Genelde güvenlik amaçlı da kullanılabilir ama çok çeşitli sektörlerin de kullanımına açıktır. Özellikle ısıya güdümlü füze, gece görüş sistemleri ve benzeri askeri tekniklerin gelişmesi ile önemi artmıştır.

<span class="mw-page-title-main">Gözlemsel astronomi</span>

Gözlemsel astronomi astronomi bilimlerinin, teorik astrofizikten farklı olarak veri almayla ilgilenen bir dalıdır. Ana olarak fiziksel modellerin ölçülebilir içeriklerini bulmaya dayanır. Uygulama olarak, Teleskop ve diğer astronomi araç gereçleri kullanılarak gökcisimlerinin gözlenmesidir.

<span class="mw-page-title-main">Filtre (fotoğrafçılık)</span>

Filtre, film üzerine vuran ışığın özelliklerini değiştirmek ve objektifin içine giren ışığı filtre etmek için objektifin ön kısmına takılan ve cam, plastik gibi maddelerden imal edilen yardımcı araçtır.

Ultraviyole (UV) veya morötesi; dalga boyu görünür ışıktan kısa, ancak X-ışınlarından uzun olan bir elektromanyetik radyasyon şeklidir. Güneş ışığında bulunur ve Güneş'ten çıkan toplam elektromanyetik radyasyonun yaklaşık %10'unu oluşturur. Ayrıca elektrik arkları, Çerenkov radyasyonu, cıva buharlı lambalar, bronzlaşma lambaları ve siyah ışık gibi kaynaklar tarafından üretilir. Uzun dalga boylu UV fotonları atomları iyonize edecek enerjiye sahip olmadığı için iyonlaştırıcı bir radyasyon olarak kabul edilmese de, kimyasal reaksiyonlara neden olabilir ve birçok maddenin parlamasına neden olabilir. Kimyasal ve biyolojik etkiler de dahil olmak üzere pek çok pratik uygulama, UV radyasyonunun organik moleküllerle etkileşime girmesinden türer. Bu etkileşimler emilimi veya ısıtma dahil moleküllerdeki enerji durumlarının ayarlanmasını içerebilir.

<span class="mw-page-title-main">Kızılötesi</span> dalga boyu görünür ışıktan uzun, fakat terahertz ışınımından ve mikrodalgalardan daha kısa olan elektromanyetik ışınımdır

Kızılötesi, görünür ışıktan daha uzun ancak mikrodalgalardan daha kısa dalga boylarına sahip elektromanyetik radyasyondur (EMR). Kızılötesi spektral bant, kırmızı ışığınkinden biraz daha uzun dalgalarla başlar, bu nedenle IR insan gözü için görünmezdir. IR'nin genellikle yaklaşık 750 nm (400 THz) ila 1 mm (300 GHz) arasındaki dalga boylarını içerdiği anlaşılmaktadır.

<span class="mw-page-title-main">Fotodiyot</span> p-n bağlantısına dayalı fotodetektör türü

Fotodiyot, görünür ışık, kızılötesi veya ultraviyole radyasyon, X ışınları ve gama ışınları gibi foton radyasyonuna duyarlı bir yarı iletken diyottur. Fotodiyot, fotonları emdiğinde akım veya voltaj Fotovoltaikleri üreten bir PN yarı iletken malzemedir.Semiconductor Optoelectronics .

Işık gözün algıladığı elektromanyetik ışınıma verilen isimdir. Işık gücünün toplam elektromanyetik ışınım gücüne olan oranı ise Batı dillerinde efficacy olarak adlandırılır. Bu terim dilimize ışık verimliliği ya da ışık etkinliği olarak çevrilebilir. Elektromanyetik ışınımın kızılötesi ve morötesi kısımları aydınlatma için kullanılamaz. Bir kaynağın tam ışık verimi, elektromanyetik ışınımın insan gözü tarafından ne derece algılandığı ile ilgilidir.

<span class="mw-page-title-main">Radyasyon</span> Uzayda hareket eden dalgalar veya parçacıklar

Radyasyon veya ışınım, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. "Radyoaktif maddelerin alfa, beta, gama gibi ışınları yaymasına" veya "Uzayda yayılan herhangi bir elektromanyetik ışını meydana getiren unsurların tamamına" da radyasyon denir. Bir maddenin atom çekirdeğindeki nötronların sayısı, proton sayısına göre oldukça fazla veya oldukça az ise; bu tür maddeler kararsız bir yapı göstermekte ve çekirdeğindeki nötronlar alfa, beta, gama gibi çeşitli ışınlar yaymak suretiyle parçalanmaktadırlar. Çevresine bu şekilde ışın saçarak parçalanan maddelere radyoaktif madde denir.

<span class="mw-page-title-main">Kemilüminesans</span>

Kemilüminesans ya da kimyasal ışıldama, madde içinde gerçekleşen kimyasal reaksiyon sonucu çok az miktarda ısıl ışıma ve ışık ışıması durumudur. Kimya da pek çok uygulaması görülür. Gündelik hayatta ise en çok yanma reaksiyonları sonucu gözlemlenir. Işığın bir yüzeyden yayımlanmasından farklı olarak burada ışığın yayımlanma nedeni kimyasal reaksiyondur. Kimyasal reaksiyon sonucu ortaya çıkan enerji, reaksiyonda görev alan her bir molekülün ve hatta ara ürünler olan radikallerin enerji seviyelerinde değişime neden olurlar ve bu bahsi geçen molekül ve radikallerin karakterlerine uygun olarak belirli bir dalgaboyunda foton yayımlarlar. Absorbsiyon spektroskopisi kuralları doğrultusun da yayımlanan fotonlar reaksiyona giren maddelerin karakterini ve türünü ortaya koyan renklerde görülmelerinin sebebidir.

<span class="mw-page-title-main">İyonlaştırıcı olmayan radyasyon</span> Düşük frekanslı radyasyon

İyonlaştırıcı olmayan radyasyon, bir atomdan veya molekülden bir elektronu tamamen koparabilmek için atomları veya molekülleri iyonlaştırabilecek yeterli enerji taşıyan kuantumlara sahip olmayan herhangi bir elektromanyetik radyasyon türüdür. Elektromanyetik radyasyon, maddenin içinden geçerken yüklü iyonlar üretmez. Yalnızca, bir elektronu daha yüksek enerji seviyesine çıkaran uyarım için yeterli enerjiye sahiptir. İyonlaştırıcı olmayan radyasyondan daha yüksek bir frekansa ve daha kısa dalga boyuna sahip olan iyonlaştırıcı radyasyon birçok kullanım alanına sahiptir, ancak sağlık için bir tehdit olabilir. İyonlaştırıcı radyasyona maruz kalmak yanıklara, radyasyon hastalıklarına, kansere ve genetik hastalıklara sebep olabilir. İyonlaştırıcı radyasyon kullanmak, iyonlaştırıcı olmayan radyasyon kullanılırken genelde gerekli olmayan dikkatli ve özenle alınmış radyolojik korunma önlemleri gerektirir.

<span class="mw-page-title-main">Kara cisim ışınımı</span> opak ve fiziksel yansıma gerçekleştirmeyen siyah cisimden yayılan ve sabit tutulan tekdüze ısı

Siyah cisim ışıması içinde elektromanyetik ışıma ya da çevresinde termodinamik dengeyi sağlayan ya da siyah cisim tarafından yayılan ve sabit tutulan tekdüze ısıdır. Işıma çok özel bir spektruma ve sadece cismin sıcaklığına bağlı olan bir yoğunluğa sahiptir. Termal ışıma, birçok sıradan obje tarafından kendiliğinden yayılan bir siyah cisim ışıması sayılabilecek türden bir ışımadır. Tamamen yalıtılmış bir termal denge ortamı siyah cisim ışımasını kapsar ve bir boşluk boyunca kendi duvarını yaratarak yayılır, boşluğun etkisi göz ardı edilebilecek kadar küçüktür. Siyah cisim oda sıcaklığında siyah görünür, yaydığı enerjinin çoğu kızılötesidir ve insan gözü ile fark edilemez. Daha yüksek sıcaklıklarda, siyah cisimlerin özkütleleri artarken renkleri de soluk kırmızıdan kör edecek şekilde parlaklığı olan mavi-beyaza dönüşür. Gezegenler ve yıldızlar kendi sistemleri ve siyah cisimler ile termal dengede olmamalarına rağmen, yaydıkları enerji siyah cisim ışımasına en yakın olaydır. Kara delikler siyah cisim olarak sayılabilirler ve kütlelerine bağlı bir sıcaklıkta siyah cisim ışıması yaptıklarına inanılır . Siyah Cisim terimi, ilk olarak Gustav Kirchhoff tarafından 1860 yılında kullanılmıştır.

Isıl ışınım maddedeki yüklü parçacıkların ısıl hareketiyle meydana gelmiş elektromanyetik ışınımdır. Isısı mutlak sıfırdan büyük olan her madde ısıl ışınım yayar. Isısı mutlak sıfırdan büyük olan maddelerde atomlar arası çarpışmalar, atomların ya da moleküllerin kinetik enerjisinde değişime neden olur.

<span class="mw-page-title-main">Renk sapması</span>

Renk sapması, renk sapıncı, renkser sapınç, kromatik sapma veya kromatik aberasyon, optikte bir lensin tüm renkleri aynı uyumda odaklayamamasından kaynaklanan bir sorundur. Bunun nedeni lenslerin değişik dalga boyları ve değişik ışıklar için değişik sapma endekslerinin olmasıdır. Sapma endeksi dalga boyu arttıkça azalır. Bu sorun en çok kırılmalı teleskoplarda görülür ve çözümleri vardır ancak giderirken çıkan maliyet, kırılmalı teleskop yapımındaki en büyük problemlerdendir.

<span class="mw-page-title-main">Wien yasası</span>

Fizikte Wien yasası siyah cisim radyasyonunda sıcaklık ile ışık dalga boyu arasındaki ilişkiyi veren bir fizik yasasıdır. Yasa adını Alman bilim insanı Wilhelm Wien'den (1864-1928) alır.