İçeriğe atla

Kırınım ağı

Bir kırınım ağı örneği

Optikte kırınım ağı, ışığın kırınım yolu ile farklı yönlerdeki hüzmelere dağılmasını sağlayan periyodik bir optik alettir. Buz hüzmelerin yönü ağın periyoduna ve gelen ışığın dalga boyuna bağlıdır.

Kırınım ağlarının temel prensipleri ilk kez 17. yüzyılda astronom James Gregory tarafından keşfedilmiştir.[1] David Rittenhouse ilk kırınım ağını 1785'te üretmiştir.[2] Kırınım ağları günümüzde lazerler, hologramlar ve spektrometreler gibi birçok optik aygıt ve üründe kullanılmaktadır. CD ve DVD gibi optik disk'lerdeki ışık yansımaları kırınım ağlarının etkilerine örnek gösterilebilir.

Temel prensipleri

Kırınım ağı denklemi

Kırınım ağlarının temeli girişim ve kırınım ilkelerine dayalıdır. Huygens-Fresnel ilkesi ilerleyen bir dalga cephesinin her noktasının bir noktasal dalga kaynağı olarak görülebileceğini öne sürer; dalganın sonraki bir pozisyondaki cephesi bu kaynaklardan çıkan dalgaların yapıcı ve yıkıcı girişimi ile elde edilebilir. Kırınım ağlarındaki periyodik yapılar ise geçirgen veya yansıtıcı olabilir. Bu ağlardan yansıyan veya geçen ışığın kırınım sonucu oluşturduğu dalgalar ağın periyoduna ve ışığın havadaki dalga boyuna göre yapıcı veya kırıcı girişim yapar. Işığın dağılma özelliği sonucu farklı ayrık dalga boyları için farklı açılarda hüzmeler oluşur.[3][4]

Kırınım ağlarının çalışma prensibi kırınım ağı formülü ile özetlenebilir:

Bu formülde ağa gelen düzlem dalganın geliş açısı, ise dağılma açısıdır. ve ise sırasıyla ışığın dalga boyunu ve ağın periyodunu gösterir. katsayısı ise sadece tam sayı değerler alır ve kırınımın mertebesini belirtir. Sıfırıncı mertebede herhangi bir kırınım gözlenmez.[3]

Bir ampul ışığının üç farklı mertebede kırınımı

Kırınımın mertebesi yükseldikçe ışığın yoğunluğu azalır. Buna karşın daha yüksek mertebelerdeki dalga boyları birbirinden daha kolay ayırt edilebilir; bu durum açısal dağılma olarak nitelendirilmektedir. Açısal dağılma,

şeklinde ifade edilebilir. Kırınım ağının çözünüm gücü ise kırınım mertebesi ile periyodik yapı sayısının çarpımına denk düşer.[3]

Genellikle kırınım ağları yansıma veya geçirme prensipleri ile çalışır. Geçirgen ağlar ise genlik ağları ve faz ağları olarak ikiye ayrılır: genlik ağlarda opak, faz ağlarında ise transparan periyodik yarıkların kullanılması ile ışığın modülasyonu gerçekleşir.[3][4] Yansıtıcı ağlar genellikle alüminyumun termal buharlaştırılma ile cam yüzeye çökeltilmesi ile üretilir.[4] Kırınım ağları aynı zamanda transparan bir malzemedeki kırınım indisinin periyodik bir şekilde değiştirilmesi ile de elde edilebilir; bu ağlar holografik hacim ağları olarak bilinmektedir.[5]

Galeri

Ayrıca bakınız

Kaynakça

  1. ^ Rigaud, Stephen Jordan, (Ed.) (1841). Correspondence of Scientific Men of the Seventeenth Century …. 2. Oxford University Press. ss. 251-5. 
  2. ^ Hopkinson, F.; Rittenhouse, David (1786). "An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse". Transactions of the American Philosophical Society. 2: 201-6. doi:10.2307/1005186. JSTOR 1005186. 
  3. ^ a b c d Pedrotti, Pedrotti & Pedrotti 2006, ss. 292-305.
  4. ^ a b c Saleh & Teich 1991, ss. 60-62.
  5. ^ Paschotta, Rüdiger. "Diffraction Gratings". rp-photonics.com. 30 Eylül 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Temmuz 2021. 
Bibliyografi
  • Pedrotti, Frank L.; Pedrotti, Leno M.; Pedrotti, Leno S. (2006). Introduction to Optics (İngilizce) (3 bas.). Pearson. ISBN 9780131499331. 
  • Saleh, Bahaa E. A.; Teich, Malvin C. (1991). Fundamentals of Photonics (İngilizce). John Wiley & Sons. ISBN 9780471839651. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Rayleigh saçılması</span>

Rayleigh saçılımı, ışığın veya diğer elektromanyetik radyasyonun, ışığın dalga boyundan daha küçük tanecikler tarafından saçılımını ifade eder. Bu isim, İngiliz fizikçi Lord Rayleigh'ın adına ithafen verilmiştir.

<span class="mw-page-title-main">Sinüs dalgası</span>

Sinüzoid dalga, matematikte, yalnız süreçlerde, dalgalı akım kuvvet mühendisliğinde ve diğer alanlarda sıklıkla bir fonksiyon olarak yer alır.

Işık akısı bir fiziksel niceliktir ve insan gözünün algıladığı ışık gücünün miktarını ifade eder. Bu tariften de anlaşıldığı gibi, ışık akısı hem ışınım yapan kaynağın gücüne hem de insan gözünün özelliğine bağlıdır. SI birimi MKS sisteminde lumen dir.

de Broglie hipotezini doğrulayan fizik deneyi, Davisson-Germer deneyi, Amerikalı fizikçi olan Clinton Davisson ve Lester Germer tarafından 1923-1927 yılları arasında yapıldı. Bu hipotez Louis de Broglie tarafından 1924 yılında ortaya konulmuştur ve hipoteze göre elektron gibi maddenin parçacıklarında dalga tipi bir özellik vardır. Bu deney ise sadece de Broglie hipotezini onaylama ve dalga-parçacık ikilisini sunmakla kalmayıp aynı zamanda kuantum mekaniğine ve Schrödinger denklemi için önemli bir tarihi gelişmedir.

Fizikte, Faraday etkisi ışığın ve manyetik alanın bir ortam içindeki ilişkisini ele alan bir manyeto-optik olgudur. Faraday etkisi, yayınım yönündeki manyetik alan bileşenine neredeyse dik olan bir polarize levhanın dönmesine neden olur.

<span class="mw-page-title-main">Fresnel kırınımı</span>

Fresnel kırınımı ya da yakın-alan kırınımı dalganın yarıktan geçerken, yarık ve projeksiyon arasındaki uzaklığa bağlı olarak büyüklüğünde ve şeklinde değişkenlik gösteren kırınım desenlerine sahip olacak şekilde yakın alanda oluşan kırınım sürecidir. Fresnel sayısının 1'den büyük olduğu durumlarda kırınan dalgaların yayıldığı kısa mesafeden dolayı oluşur. Mesafe arttıkça, ilerleyen kırınım dalgaları düzlem ve Fraunhofer kırınımı oluşturur. Birçok Fresnel kırınımının periyodik bombeler yakınında konumlanması yansımanın aynadan yansımış gibi olmasına neden olur; bu sonuç atomik aynalar için kullanılabilir.

 : yarığın karakteristik genişliği
 : gözlemlenen noktanın yarığa olan uzaklığı
 : dalga boyu.

Adını fizikçi Augustin-Jean Fresnel'den alan Fresnel sayısı F optikte özellikle de kırınım teorisinde görülen birimsiz bir sayıdır. Yarıktan geçerek karşıdaki ekrana çarpan bir elektromanyetik dalga için Fresnel sayısı şu şekilde bulunur:

 : yarığın karakteristik genişliği
 : ekran ve yarık arasındaki uzaklık
 : dalga boyu.

Fraunhofer kırınımı ya da uzak-alan kırınımı dalganın uzak bölgelerde yayıldığı durumlarda uygulanan bir Kirchhoff-Fresnel kırınımı yaklaşımıdır.

<span class="mw-page-title-main">İnce filmde girişim</span>

İnce filmde girişim, ince bir film tabakasında alt ve üst sınırlarından yansıyan ışık dalgaları birbirlerine müdahale ettiğinde ortaya çıkan desene ince filmlerde girişim denir. Bu yeni dalga incelemesi sonucunda bileşenlerin yansıyan yüzeyleri hakkında bilgi verir. İnce filmler ticari uygulama alanlarında da karşımıza çıkar. Yansıma önleyici kaplamalar, aynalar, optik filtrelerde de uygulanır.

<span class="mw-page-title-main">Compton saçılması</span>

Compton olayı, yüksek enerjili X ışınlarının fotonu ile karbon atomunun serbest elektronunun çarpıştırılması sonucu elektronun ve fotonun şekildeki gibi saçılması olayıdır.

<span class="mw-page-title-main">Tek yarık deneyi</span>

Tek yarık deneyi, bir fant üzerindeki w genişlikli tek bir yarığa paralel ışık demeti gönderip, yarıktan yayılan ışınların ekran üzerinde girişim meydana getirmesi olayının gözlemlendiği deneydir.

<span class="mw-page-title-main">Çift yarık deneyi</span>

Young deneyi olarak da bilinen çift-yarık deneyi, ışığın dalga özelliği sergilediğini gösterir. Fotoelektrik etkisi ışığın dalga özelliğinin yanı sıra parçacık özelliği de sergilediğini gösterir. Deneyin basit versiyonunda lazer ışını gibi bağdaşık bir ışık kaynağı, iki paralel yarık açılmış ince bir levhayı aydınlatır ve yarıktan geçen ışık levhanın arkasındaki bir ekranda gözlemlenir. Işığın dalga doğası ışık dalgalarının iki yarıktan da geçerek girişim yapmasını ve ekranda aydınlık ile karanlık bantlar oluşturmasını sağlar ki bu sonuç ışık tamamen parçacıklı yapıda olsa beklenemez. Fakat, parçacıklardan veya fotonlardan oluşuyormuş gibi, ekranda her zaman ışığın soğurulduğu görülür. Bu durum dalga-parçacık ikiliği olarak bilinen prensibi ortaya koyar.

<span class="mw-page-title-main">Fresnel denklemleri</span>

Bu kısım ışığın değişmez düzlemsel arayüzeylerdeki yansımaları ve kırınımlarını tanımlayan Fresnel denklemleri hakkındadır.Işığın bir açıklık boyunca kırınımları için Fresnel kırınımlarına bakınız.İnce lensler ve ayna teknolojileri için Fresnel lens lerine bakınız.

<span class="mw-page-title-main">Fabry-Pérot interferometresi</span>

Optikte Fabry-Pérot interferometresi veya etalon, iki paralel yansıtıcı yüzeyden oluşan bir optik kovuktur. İnterferometre ismini cihazı 1899'ta geliştiren fizikçiler Charles Fabry ve Alfred Perot'tan almıştır. Cihazın diğer ismi olan etalon, Fransızca ölçme standartı anlamına gelen étalon kelimesinden gelmektedir.

<span class="mw-page-title-main">Göreli Doppler etkisi</span>

Relativistik Doppler Etkisi ya da Göreli Doppler etkisi, adını ünlü bilim insanı ve matematikçi Christian Andreas Doppler'dan almakta olup, kısaca dalga özelliği gösteren herhangi bir fiziksel varlığın frekans dalga boyu Dalga boyu, bir dalga görüntüsünün tekrarlanan birimleri arasındaki mesafedir. Yaygın olarak Yunanca lamda (λ) harfi ile gösterilmektedir. hareketli bir gözlemci tarafından farklı zaman ve/veya konumlarda farklı algılanması olayıdır. Bu da göreli olduğunu belirtir. Herhangi bir A konumundan B konumuna gitmek icin fiziksel bir dalga ortamı'na ihtiyaç duyan dalgalar icin Doppler Etkisi hesaplamaları yapılırken, dalga kaynağı ve gözlemcinin birbirine göre konum, yön ve hızlarının yanında dalganın içinde veya üzerinde hareket ettiği dalga ortamının da fiziksel yapısı dikkate alınmak zorundadır. Eğer söz konusu dalga herhangi bir A konumundan B konumuna gitmek için fiziksel bir dalga ortamına ihtiyaç duymuyor ise Doppler Etkisi hesaplamalarında sadece dalga kaynağının ve gözlemcinin birbirine göre birim zamandaki konumlarının değerlendirilmesi yeterlidir. Göreli doppler olayı değişikliği olduğu frekansa ışık kaynağının göreceli hareketine göredir ve, Göreli Doppler etkisi relativistik olmayan farklı Doppler etkisi denklemleri dahil olarak zaman genişlemesi etkisini özel görelilik ve referans noktası olarak yayılma ortamı dahil değildir. Lorentz simetri gözlenen frekanslar için toplam farkı anlatır.

Fourier optiği dalgaların yayılma ortamını kendisinin doğal modu olduğunu kabul etmek yerine, belirli bir kaynağa sahip olmayan düzlemsel dalgaların üstdüşümlerin olarak addeden Fourier dönüşümlerini kullanan klasik optiğin bir çalışma alanıdır. Fourier optiği, dalgayı patlayan bir küresel ve fiziksel olarak Green's fonksiyon denklemleriyle tanımlanabilen tanımlanabilen ve bu kaynağından dışarıya ışıma yapan dalganın üstdüşümü olarak adddeden Huygens-Fresnel prensibinin ikizi olarak da görülebilir.

<span class="mw-page-title-main">Parabolik anten</span>

Parabolik anten, süper yüksek frekansta (SHF), daha ender olarak ultra yüksek frekansta (UHF) kullanılan bir anten türüdür. Halk arasında bu antenlere çanak anten de denilir. Bu antenler hem alıcılarda hem de vericilerde kullanılır.

<span class="mw-page-title-main">Doğrusal olmayan optik</span>

Doğrusal olmayan optik ya da nonlineer optik, ışığın doğrusal olmayan sistem ve malzemelerdeki davranışı ile özelliklerini inceleyen optiğin bir alt dalıdır. Bu malzemelerde elektrik alan () ile polarizasyon yoğunluğu () arasındaki ilişki doğrusal değildir; bu durum daha çok yüksek genlikte (108 V/m seviyelerinde) ışık veren lazerlerde ve lityum niobat gibi kristal yapılarında görülür. Schwinger sınırından daha kuvvetli alanlarda vakum da doğrusallığını kaybeder. Süperpozisyon prensibi bu malzemeler için geçerli değildir.

<span class="mw-page-title-main">Dağılma</span>

Elektromanyetizmada ve optikte dağılma ya da dispersiyon, elektromanyetik dalganın ilerlediği ortamdaki faz hızının frekansına bağlı olması durumudur. Kırılma indisinin frekansa bağlılığı olarak da tanımlanabilmektedir. Bu özelliğe sahip ortamlar dağıtıcı ortamlar olarak bilinir. Faz hızı ile grup hızının eşit olması durumunda dağılma sıfırlanır; grup hızının daha büyük olması anormal dağılma olarak bilinir. İletim hatları ve optik fiberler gibi dalga kılavuzlarında dalga yayılımını büyük ölçüde etkileyen dağılma, dalga denkleminin geçerliği olduğu diğer sistemlerde de gözlemlenebilmektedir.

<span class="mw-page-title-main">Faz hızı</span> dalga fazının boşlukta yayılma hızı

Bir dalganın faz hızı, o dalgayı oluşturan her bir frekans bileşeninin fazının ilerleme hızıdır. Sinüzoidal bir dalganın zirve veya dip noktası faz hızı ile ilerler. Faz hızı, dalga boyu ve periyot cinsinden,