İçeriğe atla

Kütlenin korunumu yasası

Kütlenin korunumu yasasının, tepkimeye girenler ve ürünler için her elementin aynı sayıda atomunun olması gerektiği anlamına geldiğinin görseli.

Kütlenin korunumu yasası, zaman zaman Lomonosov-Lavoisier kanunu olarak da adlandırılan, kapalı bir sistemde var olan çevrimler ve işlemler ne olursa olsun, kütlenin sabit kalacağını belirten kanundur. Denk bir ifadeyle açıklamak gerekirse kütlenin durumu yeniden düzenlenebilir fakat kütle yaratılamaz veya yok edilemez. Böylece, kapalı bir sistem dahilindeki her türlü kimyasal tepkime ve proseste tepkenlerin (yani reaktiflerin) kütlesi, ürünlerin kütlesine eşit olmalıdır.

Buna göre: Kimyasal olaylara giren maddelerin kütleleri toplamı oluşan ürünlerin toplamına eşittir. X + Y = Z + T tepkimesinde X ve Y girenler (reaktif) olup, Z ve T (ürünler)'ye kütlece eşittir.

Kimyasal maddelerin kütleleri atom sayıları ile orantılı olduğundan tüm kimyasal tepkimelerde atom sayıları korunur.

Örneğin 1 mol C atomu 12 gram, 1 mol O2 molekülü 32 gramdır. Buna göre 1 mol CO2 atomu 44 gram olur:

C + O2 = CO2
12 gram + 32 gram = 44 gram

Tarihçe

Kütlenin korunumu kanunu ilk kez Nasîrüddin Tûsî tarafından 13. yüzyıl ortaya atılmışsa da bu ilk sürümde eksiklikler mevcuttu; Maddenin yapısının değişebileceğini fakat yok olamayacağını yazmaktaydı.

Kütlenin korunumu kanunu ilk kez net bir şekilde tanımlanması 1789 tarihinde Lavoisier tarafından başarılabilmiştir. Nitekim bu sebepten ötürü bazen kendisinin modern kimyanın babası olduğu da söylenir. Bununla birlikte, Mikhail Lomonosov aslında benzeri fikirleri 1748'de ortaya atmış ve çeşitli deneyler sonucu kanıtlamıştı. Lavoisier'in çalışmasının öncülleri bununla da sınırlı değildir ve şu isimler daha erken tarihlerde benzeri fikirleri ortaya atmıştır: Joseph Black (1728 - 1799), Henry Cavendish (1731 - 1810) ve Jean Rey (1583 - 1645).

Flojiston teoremi

Lavoisier bilim dünyasında en başta yanma olayına ilişkin geliştirdiği yeni kuramıyla ün kazanır. Ne ki, kimya devrimini oluşturmada başka önemli çalışmaları da vardır. Ayrıca, deneylerinde, özellikle ölçme işleminde gösterdiği olağanüstü duyarlılık, kendisini izleyen yeni kuşak araştırmacılar için özenilen bir örnek olmuştur. Kimya dil, mantıksal düzen ve kuramsal açıklama yönlerinden bilimsel kimliğini Lavoisier'e borçludur. Tüm bu çalışmalarında ona büyük desteği eşi sağlar: deney şekillerini çizer, yabancı dillerden kaynak çeviriler yapar, makale ve kitaplarını yayıma hazırlar.

Lavoisier araştırmalarına başladığında, kimyada Antik Yunanların maddeye ilişkin dört element (toprak, su, ateş ve hava) öğretisinin yanı sıra yanmaya ilişkin flogiston kuramı geçerliydi. Bilindiği gibi, bir tahta ya da bez parçası yandığında duman ve alev çıkar, yanan nesne bir miktar kül bırakarak yok olur.

Yürürlükteki kurama göre, yanma, yanan nesnenin flogiston denen, ama ne olduğu bilinmeyen, gizemli bir madde çıkarması demekti. Odun kömürü gibi yandığında geriye en az kül bırakan nesneler flogiston bakımından en zengin nesnelerdi. Bilim insanlarının çoğunluk doyurucu bulduğu bu kurama ters düşen kimi gözlemler de yok değildi. Bunlardan biri yanma için havanın gerekliliğiydi. Bir diğeri, kurşun gibi madenlerin, erime derecesinde ısıtıldığında, yüzeylerinde oluşan "calx"ın, madenin eksilen bölümünden daha ağır olmasıydı. Aslında yanma olayını açıklamadaki güçlüğün bir nedeni gazlara ilişkin bilgi eksikliğiydi. 1756'da İskoç Joseph Black "sabit gaz" dediği karbon dioksidi buluncaya dek bilinen tek gaz hava idi. İngiliz kimya bilgini Joseph Priestley daha sonra deneysel olarak on kadar yeni gaz keşfeder. Bunlardan biri onun "yetkin gaz" dediği, ileride Lavoisier'in "oksijen" adını verdiği gazdır.

Priestley, oksijeni bulmasına karşın flogiston kuramından kopamaz. Üstün bir deneyci olan bu İngiliz bilim insanı, kuramsal yönden rakibi Lavoisier ile boy ölçüşecek yeterlikte değildi. Lavoisier yanma olayı ile 1770'lerin başında ilgilenmeye başlamıştı. Kapalı bir kapta fosfor yakınca gazın ağırlığının değişmediğini, oysa kabı açtığında havanın içeri girmesiyle birlikte gazın ağırlığının az da olsa arttığını saptamıştı. Bu gözlemin yürürlükteki kurama uymadığı belliydi, ama daha doyurucu bir açıklaması da yoktu.

Kütlenin korunumu kanunu

Lavoisier aradığı açıklamanın ipucunu birkaç yıl sonra Priestley'le Paris'te buluştuğunda elde eder. Priestley cıva oksit üzerindeki deneylerinden söz ederken bulduğu "yetkin gaz"ın özelliklerini belirtir. Lavoisier yayınlarının hiçbirinde Priestley'e hakkı olan önceliği tanımaz; sadece bir kez, "Oksijeni Priestley'le hemen aynı zamanda keşfetmiştik," demekle yetinir.

Doğrusu, oksijenin keşfinde öncelik Lavoisier'in değildi; ama bu gazın gerçek önemini ilk kavrayan bilim insanıydı. Priestley'in deneylerini kendine özgü dikkat ve özenle tekrarlamaya koyulur. Belli miktarda havaya yer verilen bir kapta cıva ısıtıldığında, cıvanın kırmızı cıva okside dönüşmesiyle ağırlık kazandığı, havanın ise aynı ölçüde ağırlık yitirdiği görülür. Lavoisier deneylerinde bir adım daha ileri gider: cıvadan ayırdığı cıva oksidi (calx'ı) tarttıktan sonra daha fazla ısıtır; kora dönüşen kırmızı oksidin giderek yok olmaya yüz tuttuğunu, geriye belli sayıda cıva taneciğiyle, solunum ve yanma sürecinde atmosferik havadan daha etkili bir miktar "elastik akıcı" kaldığını saptar. Elastik akıcı Priestley'in "yetkin gaz" dediği şeydi.

Lavoisier üstelik bu artığın ağırlığı ile cıvanın ilk aşamadaki ısıtılmasından azalan hava ağırlığının da eşit olduğunu belirler. Dahası, cıva oksidin ısı altında cıvaya dönüşmesiyle kaybettiği ağırlık etkili bölümüyle (yani oksijenle) birleşmesiyle gerçekleşmektedir. Başta önemsenmeyen bu kuram, suyun iki gazın birleşmesiyle oluştuğuna ilişkin Cavendish deney sonuçlarını da açıklayınca, bilim çevrelerinin dikkatini çekmede gecikmez. Cavendish deneylerinde, asitlerin metal üzerindeki etkisinden "yanıcı" dediği bir gaz elde etmiş, bunu flogiston sanmıştı. Ancak Priestley'in bir deneyi onu bu yanlış yorumdan kurtarır. Priestley, hidrojen ve oksijen karışımı bir gazı elektrik kıvılcımıyla patlattığında bir miktar çiyin oluştuğunu görmüştü. Aynı deneyi tekrarlayan Cavendish daha ileri giderek patlamada "yanıcı" gazınsu olduğunu saptar.

Flogiston teorisi yıkılmıştı artık. Yeni teorinin benimsenmesi, kimi bağnaz çevrelerin direnmesine karşın, uzun sürmez. Kimyada geciken atılım sonunda gerçekleşmiş olur. Lavoisier ulaştığı sonucu Bilim Akademisi'ne bir bildiriyle sunar; ne var ki, tek kelimeyle de olsa Priestley, Cavendish vb. deneycilerin katkılarından söz etmez. Lavoisier'in aslında ne yeni kimyasal bir nesne, ne de yeni kimyasal bir olgu keşfettiği söylenebilir.yeni ve işler bir sistem kurmaktı. 1789'da yayımlanan "Traité Élémentaire de Chimie" adlı yapıtı, kendi alanında, Newton'un Principia'sı sayılsa yeridir. Biri modern fiziğin, diğeri modern kimyanın temelini atmıştır.

Lavoisier'i unutulmaz yapan bir özelliği de nesnelerin kimyasal değişimlerini ölçmede gösterdiği olağanüstü duyarlılıktı. Bu özelliği ona "Kütlenin Korunumu Yasası" diye bilinen çok önemli bilimsel bir ilkeyi ortaya koyma olanağı sağlar. Lavoisier kimi kez kendi adıyla da anılan bu ilkeyi şöyle dile getirmişti:

"Doğanın tüm işleyişlerinde hiçbir şeyin yoktan var edilmediği, tüm deneysel dönüşümlerde maddenin miktar olarak aynı kaldığı, elementlerin tüm bileşimlerinde nicel ve nitel özelliklerini koruduğu gerçeğini tartışılmaz bir aksiyom olarak ortaya sürebiliriz."

Genelleştirme

Özel görelilikte kütlenin korunumu mevcut değildir. Nitekim bir parçacık sisteminin kütlesinin, her bir parçacığın kütlelerinin toplamına eşit olduğu prensibi de özel görelilikte doğru değildir.

İlgili Araştırma Makaleleri

Kimya, maddenin yapısını, özelliklerini, birleşimlerini, etkileşimlerini, tepkimelerini araştıran ve uygulayan bilim dalıdır. Kimya bilmi daha kapsamlı bir ifadeyle maddelerin özellikleriyle, sınıflandırılmasıyla, atomlarla, atom teorisiyle, kimyasal bileşiklerle, kimyasal tepkimelerle, maddenin hâlleriyle, moleküller arası ve moleküler kuvvetlerle, kimyasal bağlarla, tepkime kinetiğiyle, kimyasal dengenin prensipleriyle vb konularla ilgilenir. Kimyanın en önemli dalları arasında analitik kimya, anorganik kimya, organik kimya, fizikokimya ve biyokimya sayılır.

<span class="mw-page-title-main">Hidrojen</span> sembolü H ve atom numarası 1 olan kimyasal element

Hidrojen, sembolü H, atom numarası 1 olan kimyasal bir element. Standart sıcaklık ve basınç altında renksiz, kokusuz, metalik olmayan, tatsız, oldukça yanıcı ve H2 olarak bulunan bir diatomik gazdır. 1,00794 g/mol'lük atomik kütlesi ile tüm elementler arasında en hafif olanıdır. Periyodik cetvelin sol üst köşesinde yer alır. Hidrojenin adı, Yunancada "su oluşturan" anlamına gelen ὑδρογόνο'dan (idrogono) kelimesinden gelir.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Oksijen</span> sembolü O ve atom numarası 8 olan kimyasal element

Oksijen atom numarası 8 olan ve O harfi ile simgelenen kimyasal elementtir. Oksijen ismi Yunanca ὀξύς (oxis - "asit", tam anlamıyla "keskin", asitlerin acı tadı kastedilir) ve -γενής (-genēs) ("üretici", tam anlamıyla "sebep olan şey") köklerinden gelmektedir, çünkü isimlendirildiği zamanlarda tüm asitlerin oksijen içerikli olduğu sanılırdı. Standart şartlar altında, elementin iki atomu bağlanarak çok soluk mavi renkte, kokusuz, tatsız, diatomik yapıdaki, O2 formülüne sahip dioksijen gazını oluşturur.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Joseph Priestley</span> Fransız siyasetçi

Joseph Priestley FRS, İngiliz kimyager, doğa filozofu, ayrılıkçı ilahiyatçı, dilbilgisi uzmanı, çok konulu eğitimci ve liberal siyaset kuramcısıydı.

<span class="mw-page-title-main">Azot</span> simgesi N ve atom numarası 7 olan element

Azot ya da nitrojen, simgesi N olan bir element olup atom numarası 7'dir. Renksiz, kokusuz, tatsız ve inert bir gazdır. Azot, dünya atmosferinin yaklaşık %78'ini oluşturur ve tüm canlı dokularında bulunur. Azot ayrıca, amino asit, amonyak, nitrik asit ve siyanür gibi önemli bileşikler de oluşturur.

<span class="mw-page-title-main">Karbonmonoksit</span> 0,97 yoğunluğunda, renksiz, kokusuz, zehirleyici bir gaz. Bol miktarda ısı açığa çıkararak mavi bir alevle yanar ve hava ile birleşerek birçok uygulama alanı olan patlayıcı bir karışım oluşturur (CO)

Karbonmonoksit, CO formülüne sahip sadece bir karbon ve bir oksijen atomundan oluşan inorganik bileşiktir Karbonmonoksitte karbon ve oksijen arasında üçlü bağ vardır. Endüstride jeneratör gazı, su gazı, kuvvet gazı ve hava gazı içinde kullanılır. Yakıt olarak da kullanılmaktadır.

Kimya yasaları, kimya ile ilgili olan doğa yasalarıdır.

<span class="mw-page-title-main">Patlayıcı madde</span> patlamaya neden olabilecek büyük miktarda potansiyel enerji içeren reaktif madde

Patlayıcı madde, hararet veya şok tesiri ile kimyasal değişikliğe uğrayan, yüksek derecede ısı, çok hacimde gaz meydana getiren, katı, sıvı veya gaz hâlindeki kimyasal maddelerdir.

<span class="mw-page-title-main">Molekül kütlesi</span>

Bir kimyasal bileşiğin molekül kütlesi, bu bileşiğin bir molekülünün birleşik atom kütle birimi u cinsinden kütlesidir. Bağıl bir değer olduğundan bir maddenin molekül kütlesine yaygın olarak bağıl moleküler kütle denir ve Mr. diye de kısaltılır.

Dalton atom modeli, John Dalton'un 1805 yılında bugünkü atom modelinin ilk temellerini attığı modelidir. Katlı oranlar yasasını bulmuştur. Dalton'un atom kuramına göre elementler, kimyasal bakımdan birbirinin aynı olan atomlar içerirler. Farklı elementlerin atomları birbirinden farklıdır. Bu atom teorisine göre kimyasal bir bileşik, iki veya daha çok sayıda elementin basit bir oranda birleşmesi sonucunda meydana gelir. Kimyasal tepkimelere giren maddeler arasındaki kütle ilişkilerine istinaden, Dalton atomların bağıl kütlelerini de bulmuştur.

<span class="mw-page-title-main">Antoine Lavoisier</span> Fransız bilim insanı ve kimyacı (1743–1794)

Antoine-Laurent de Lavoisier, Fransız kimyacı.

<span class="mw-page-title-main">Aerodinamik</span> Fizik terimi ve bilim dalı

Aerodinamik, hareket eden katı kütlelerin havayla etkileşimlerini inceleyen bilim dalıdır. Aerodinamik sözcüğü Yunancadan gelmiş olup bu bilim dalı havanın hareketi ile ilgilidir. Parçalı olarak katı bir cisim ile irtibata geçmiş olması, havanın hareketi ve uçağın kanadı gibi, buna örnek olarak gösterilebilir. Aerodinamik akışkan dinamiği ve gaz dinamiğinin bir alt dalıdır ve aerodinamiğin birçok bakış açısı, teorisi bu alanlarda ortaktır. Aerodinamik genellikle gaz dinamiği için kullanılır; gaz dinamiğinin aerodinamikten farkı, tüm gazlar için çalışması ve aerodinamik gibi yalnızca hava ile sınırlanmamış olmasıdır.

<span class="mw-page-title-main">Henry Cavendish</span>

Henry Cavendish, İngiliz kimyager ve fizikçi. Çok çeşitli alanlarda gerçekleştirdiği deneylerle, havanın bileşimi, hidrojenin niteliği ve özellikleri, bazı cisimlerin özgül ısıları, suyun bileşimi ve elektriğin çeşitli özellikleri gibi konularda buluşlar yapmıştır. Cavendish deneyi olarak adlandırılan bir yöntemle Dünya'nın kütlesini ve yoğunluğunu ölçmüştür.

William Nicholson. İngiliz kimyacı, suyun elektrolizinin mucidi, hidrolik mühendisi, mucit ve bilimsel yayıncı.

<span class="mw-page-title-main">Theodore Richards</span> Amerikalı kimyager (1868 – 1928)

Theodore William Richards Amerikalı kimyacı, 1914 Nobel Kimya Ödülü sahibi. Nobel ödülünü "çok sayıdaki kimyasal elementin atom ağırlıklarının doğru bir şekilde saptanmasından dolayı" kazandı.

<span class="mw-page-title-main">Filojiston teorisi</span>

Filojiston teorisi, filojiston adındaki ateş elementinin cisimlerdeki yanma sırasında salındığını iddia eden günümüzde geçerliliğini yitirmiş bir teoridir. Filojiston kelimesi Antik Yunancada φλογιστόν phlogistón(yanan) φλόξ phlóx(ateş) kelimesinden türetilmiştir. İlk kez Johann Joachim Becher tarafından 1667 yılında ortaya atılmıştır. Teorinin amacı yanma ve paslanma gibi süreçleri izah etmektir. Günümüzde ise paslanma olayı herkes tarafından bilinmektedir.

<span class="mw-page-title-main">Marie-Anne Paulze Lavoisier</span> Fransız kimyacı ve ressam

Marie-Anne Pierrette Paulze, Fransız kimyager ve asilzade. Madam Lavoisier, kimyager ve asil Antoine Lavoisier'nin karısıydı. Eşine laboratuvar asistanı olarak destek oldu ve çalışmalarına katkıda bulundu. Çeşitli bilimsel çalışmaların çevirisinde çok önemli bir rol oynadı ve bilimsel yöntemin standartlaştırılmasında etkili oldu.

<span class="mw-page-title-main">Madde miktarı</span> kapsamlı fiziksel özellik

Madde miktarı, kimya alanında içindeki ayrı atomik ölçekli parçacıkların sayısının Avogadro sabiti NA'ya bölümü olarak tanımlanmaktadır. Özetle atomik görüşte, madde miktarı, maddeyi oluşturan parçacıkların sayısıdır. Parçacıklar veya maddeler, bağlama bağlı olarak moleküller, atomik, iyonik, elektron veya başka bir yapıda bulunabilmektedirler. Avogadro sabiti NA'nın değeri 6.02214076×1023 mol−1 olarak tanımlanmaktadır. Gerçek atomik görünümde, maddenin 1 molü, 6.02214076×1023 adet (Avogadro sayısı kadar) parçacık içermektedir. Madde miktarı, kimyasal miktar olarak da adlandırılmaktadır.