İçeriğe atla

Kütle spektrumu

Tolüenin elektron iyonlaşma kütle spektrumu[1] 8 Mayıs 2020 tarihinde Wayback Machine sitesinde arşivlendi..
Ebeveyn tepe noktasına denk gelen M = 92 (C7H8+) ve en yüksek zirveye karşılık gelen M-1 = 91 (C7H7+, quasi-kararlıtropilyum katyonu) tepe noktasına dikkat ediniz.

Kütle spektrumu, kimyasal bir analizi temsil eden m/z'ye (kütle-yük oranı) karşı yoğunluk grafiğidir. Bu nedenle, bir numunenin kütle spektrumu, bir numunedeki iyonların kütleye göre (daha doğrusu: kütle-yük oranına göre) dağılımını temsil eden bir modeldir. Genellikle kütle spektrometresi adı verilen bir alet kullanılarak elde edilen bir histogramdır. Belirli bir maddenin tüm kütle spektrumları aynı değildir. Örneğin, bazı kütle spektrometreleri analit moleküllerini parçalara ayırır; diğerleri sağlam moleküler kütleleri çok az parçalanma ile gözlemler. Bir kütle spektrumu, kütle spektrometresinin türüne ve uygulanan özel deneye bağlı olarak birçok farklı bilgi türünü temsil edebilir; ancak, kütle-yük oranı vs yoğunluk grafiklerinin tümü kütle spektrumu olarak adlandırılır. Organik moleküller için yaygın parçalanma süreçleri, McLafferty yeniden düzenlemesi ve alfa bölünmesidir.Düz zincirli alkanlar ve alkil grupları tipik bir dizi tepe noktası oluşturur: 29 (CH3CH2+), 43 (CH3CH2CH2+), 57 (CH3CH2CH2CH2+), 71 (CH3CH2CH2CH2CH2+) vb.[1]

Kaynakça

  1. ^ Interpretation of mass spectra. Sausalito, Calif: University Science Books. 1993. ss. 226-. ISBN 0-935702-25-3. 

Dış bağlantılar

İlgili Araştırma Makaleleri

Atom ağırlığı ya da bağıl atom kütlesi, belirli bir örnekteki bir elementin atomlarının ortalama kütlesinin atomik kütle sabitine oranı olarak tanımlanan boyutsuz bir fiziksel niceliktir. Atomik kütle sabiti, bir karbon-12 atomunun kütlesinin 1/12'si olarak tanımlanır. Orandaki her iki miktar da kütle olduğundan, ortaya çıkan değer boyutsuzdur; dolayısıyla değerin göreceli (bağıl) olduğu ifade edilir.

<span class="mw-page-title-main">Nükleer manyetik rezonans spektroskopisi</span> atom çekirdeğinin belirli manyetik özelliklerini kullanan bir araştırma tekniği

Nükleer manyetik rezonans spektroskopisi, yaygın bilinen adıyla NMR spektroskopisi, atom çekirdeğinin belirli manyetik özelliklerini kullanan bir araştırma tekniğidir. İçerisindeki atomların ya da moleküllerin fiziksel ve kimyasal özelliklerini belirler. NMR spektroskopisi nükleer manyetik rezonans olgusuna dayanmaktadır ve içerisindeki atomun ya da molekülün yapısı, dinamiği, reaksiyon durumu ve molekülün kimyasal çevresi hakkında detaylandırılmış bilgi sağlar. Molekül içerisindeki bir atomun atom içi manyetik alanı, rezonans frekansını değiştirdiği için molekülün elektronik yapısının detaylarına erişimi sağlar.

<span class="mw-page-title-main">Kütle spektrometrisi</span> Kütle ölçer

Kütle spektrometrisi, İngilizce: Mass spectrometry (MS), kimyasal türleri iyonize edip oluşan iyonları Kütle-yük oranını esas alarak sıralayan bir analitik teknik. Daha basit terimler ile, bir kütle spektrumu bir numunen içindeki kütleleri ölçer. Kütle spektrometrisi birçok farklı alanda kullanılır ve kompleks karışımlara uygulandığı kadar saf numunelere de uygulanır.

<span class="mw-page-title-main">Arthur Jeffrey Dempster</span>

Arthur Jeffrey Dempster en çok kütle spektrometrisi alanındaki çalışmaları ve 1935'te uranyum izotop 235 U keşfi ile tanınan Kanadalı-Amerikalı bir fizikçiydi.

<span class="mw-page-title-main">Elektrosprey iyonizasyon</span> İyon üretmek için kullanılan bir teknik

Elektrosprey iyonizasyon, bir aerosol oluşturmak için bir sıvıya yüksek voltajın uygulandığı bir elektrosprey kullanarak iyon üretmek için kütle spektrometresinde kullanılan bir tekniktir. Özellikle makromoleküllerden iyon üretiminde faydalıdır çünkü iyonize edildiğinde bu moleküllerin parçalanma eğiliminin üstesinden gelir.

<span class="mw-page-title-main">Elektron iyonizasyonu</span>

Elektron iyonizasyonu, enerjik elektronların iyonlar üretmek için katı veya gaz fazı atomları veya molekülleri ile etkileşime girdiği bir iyonizasyon yöntemidir. EI, kütle spektrometrisi için geliştirilen ilk iyonizasyon tekniklerinden biriydi. Ancak bu yöntem hala popüler bir iyonizasyon tekniğidir. Bu teknik, iyonları üretmek için yüksek enerjili elektronlar kullandığı için sert bir iyonizasyon yöntemi olarak kabul edilir. Bu, bilinmeyen bileşiklerin yapı tespiti için yardımcı olabilecek kapsamlı parçalanmaya yol açar. EI, moleküler ağırlığı 600'ün altında olan organik bileşikler için en yararlı olanıdır. Aynı zamanda, katı, sıvı ve gaz halindeki birkaç başka termal olarak kararlı ve uçucu bileşik, çeşitli ayırma yöntemleriyle birleştirildiğinde bu tekniğin kullanılmasıyla tespit edilebilir.

<span class="mw-page-title-main">Matriks-destekli lazer desorpsiyon/iyonizasyonu</span>

Kütle spektrometrisinde, matris destekli lazer desorpsiyon/iyonizasyonu (MALDI), minimum parçalanma ile büyük moleküllerden iyonlar oluşturmak için bir lazer enerjisi emici matris kullanan bir iyonizasyon tekniğidir. Daha geleneksel iyonizasyon yöntemleriyle iyonize edildiğinde kırılgan olma ve parçalanma eğiliminde olan biyomoleküllerin ve büyük organik moleküllerin analizinde uygulanmıştır. Gaz fazında büyük moleküllerin iyonlarını elde etmenin nispeten yumuşak bir yolu olması bakımından elektrosprey iyonizasyonuna (ESI) benzer, ancak MALDI tipik olarak çok daha az sayıda çok-yüklü iyon üretir.

<span class="mw-page-title-main">Kimyasal iyonizasyon</span>

Kimyasal iyonizasyon, kütle spektrometresinde kullanılan yumuşak bir iyonizasyon tekniğidir. İlk olarak Burnaby Munson ve Frank H. Field tarafından 1966'da tanıtıldı. Bu teknik, gaz iyon molekülü kimyasının bir dalıdır. Reaktif gaz molekülleri elektron iyonizasyonu ile iyonize edilir ve bunu takiben iyonlaşmayı sağlamak için gaz fazındaki analit molekülleri ile reaksiyona girerler. Negatif kimyasal iyonizasyon, yük değişimli kimyasal iyonizasyon ve atmosferik basınçlı kimyasal iyonizasyon, bu tekniğin yaygın varyasyonlarından bazılarıdır. CI, organik bileşiklerin tanımlanması, yapılarının aydınlatılması ve miktar tayininde birkaç önemli uygulamaya sahiptir. Analitik kimyadaki uygulamaların yanı sıra, kimyasal iyonizasyonun faydaları biyokimyasal, biyolojik ve tıbbi alanlara da uzanmaktadır.

<span class="mw-page-title-main">Hızlı atom bombardımanı</span>

Hızlı atom bombardımanı, yüksek enerjili atomlardan oluşan bir ışının iyonlar oluşturmak için bir yüzeye çarptığı kütle spektrometrisinde kullanılan bir iyonizasyon tekniğidir. Michael Barber tarafından 1980 yılında Manchester Üniversitesi'nde geliştirilmiştir. Atomlar yerine yüksek enerjili iyon demeti kullanıldığında (ikincil iyon kütle spektrometrisinde olduğu gibi, yöntem sıvı ikincil iyon kütle spektrometrisi olarak adlandırlır. FAB ve LSIMS' de analiz edilecek malzeme matris adı verilen uçucu olmayan kimyasal koruma ortamı ile karıştırılır ve yüksek enerjili atom ışınıyla vakum altında bombardımana tutulur. Atomlar tipik olarak argon veya ksenon gibi bir inert gazlardandır. Yaygın matrisler arasında gliserol, tiogliserol, 3-nitrobenzil alkol, 18-taç-6 eter, 2-nitrofeniloktil eter, sülfolan, dietanolamin ve trietanolamin bulunur. Bu teknik, ikincil iyon kütle spektrometrisi ve plazma desorpsiyon kütle spektrometrisine benzer.

<span class="mw-page-title-main">Gerçek zamanlı direkt analiz</span>

Kütle spektrometrisinde, gerçek zamanlı doğrudan analiz, atmosferik molekülleri veya dopant moleküllerini iyonize eden helyum, argon veya nitrojen gibi gazlardan elektronik veya titreşimsel olarak uyarılmış hal türleri üreten bir iyon kaynağıdır. Atmosferik veya dopant moleküllerden üretilen iyonlar, analit iyonları üretmek için numune molekülleri ile iyon molekülü reaksiyonlarına girer. Düşük iyonlaşma enerjisine sahip analitler doğrudan iyonize edilebilir. DART iyonizasyon işlemi, çıkış elektroduna uygulanan potansiyele bağlı olarak pozitif veya negatif iyonlar üretebilir.

<span class="mw-page-title-main">Ardışık kütle spektrometrisi</span>

MS/MS veya MS2 olarak da bilinen ardışık kütle spektrometresi, kimyasal numuneleri analiz etme yeteneklerini artırmak için iki veya daha fazla kütle analizörünün ek bir reaksiyon adımı kullanılarak birbirine bağlandığı enstrümantal analiz tekniğidir. Ardışık -MS'nin yaygın bir kullanımı, proteinler ve peptitler gibi biyomoleküllerin analizidir.

<span class="mw-page-title-main">Kuadrupol kütle analizörü</span>

Dört kutuplu kütle analizörü veya Kuadrupol kütle analizörü, kütle spektrometresinde kullanılan bir tür kütle analizörüdür. QMS birbirine paralel yerleştirilmiş dört silindirik çubuktan oluşur. Kuadrupol spektrometresinde, kuadrupol kütle analizörüdür ve kütle-yük oranlarına (m/z) göre numune iyonlarını seçmekten sorumludur. İyonlar, kuadrupolun çubuklarına uygulanan salınımlı elektrik alanlarındaki yörüngelerinin kararlılığına bağlı olarak ayrılır.

Membran girişli kütle spektrometrisi ; analitleri, yarı geçirgen bir membran yoluyla kütle spektrometresinin vakum haznesine sokma yöntemidir. Genellikle ince, gaz geçirgen, hidrofobik bir zar, örneğin polidimetilsiloksan, kullanılır. Numuneler, su, hava ve hatta bazen çözücüler dahil hemen hemen her sıvı olabilir. Numune giriş yönteminin en büyük avantajı basitliğidir. MIMS, çok az veya hiç numune hazırlığı olmadan gerçek zamanlı olarak çeşitli analitleri ölçmek için kullanılabilir. MIMS, küçük, polar olmayan moleküllerin ölçümü için en yararlı yöntemdir, çünkü bu tipteki moleküller, numuneye göre membran malzemesi için daha fazla afiniteye sahiptir.

Biyo-bilişimde, bir peptid kütle parmak izi veya peptid kütle haritası, analiz edilen sindirilmiş bir proteinden gelen bir peptit karışımının bir kütle spektrumudur. Kütle spektrumu, proteini tanımlamaya hizmet edebilecek bir model olması anlamında bir parmak izi görevi görür. 1993 yılında geliştirilen peptid kütle parmak izi oluşturma yöntemi, bir proteinin izole edilmesinden, onu tek tek peptitlere ayrıştırılmasından ve bir tür kütle spektrometresi aracılığıyla peptitlerin kütlelerinin belirlenmesi adımlarından oluşur. Bir kez oluşturulduktan sonra, bir peptit-kütle parmak izi, ilgili protein ve hatta genomik diziler için veri tabanlarında arama yapmak için kullanılabilir. Bu da ilgili proteini kodlayan genlerin açıklanması için bu tekniği güçlü bir araç haline getirir.

Üst-alt proteomik, kütle ölçümü ve ardışık kütle spektrometresi (MS/MS) analizi için izole edilmiş bir protein iyonunu depolamak üzere bir iyon yakalayıcı kütle spektrometresi veya MS/MS ile birlikte iki boyutlu jel elektroforezi gibi diğer protein saflaştırma yöntemlerini kullanan bir protein tanımlama yöntemidir. Üst-alt proteomik, yekpare haldeki proteinlerin analizi yoluyla benzersiz proteoformları tanımlama ve niceleme yeteneğine sahiptir. Kütle spektrometresi sırasında yekpare haldeki proteinler tipik olarak elektrosprey iyonizasyon ile iyonize edilir ve bir Fourier dönüşümü iyon siklotron rezonansı, kuadrupol iyon tuzağı veya Orbitrap kütle spektrometresinde tutulur. Ardışık kütle spektrometresi için parçalanma, elektron yakalama ayrışması veya elektron transfer ayrışması ile gerçekleştirilir. Etkili bir parçalanma, kütle spektrometresi tabanlı proteomikten önce numunenin işleme safyası için kritiktir. Proteom analizi rutin olarak yekpare haldeki proteinlerin sindirilmesini ve ardından kütle spektrometresi (MS) kullanılarak elde edilen protein tanımlamasını içerir. Üst-alt MS (jelsiz) proteomik, protein yapısını, yekpare haldeki bir kütlenin ölçümü ve ardından gaz fazında doğrudan iyon ayrışması yoluyla sorgular.

<span class="mw-page-title-main">Kütle (kütle spektrometrisi)</span>

Bir kütle spektrometresi tarafından kaydedilen kütle, aletin özelliklerine ve kütle spektrumunun görüntülenme şekline bağlı olarak farklı fiziksel büyüklükleri ifade edebilir.

Bir kütle kromatogramı, kütle spektrometresi verilerinin bir kromatogram olarak temsilidir; x ekseni zamanı ve y ekseni sinyal yoğunluğunu temsil eder. Kaynak veriler toplu bilgi içerir; ancak, zamana karşı sinyal yoğunluğunu görselleştirme lehine bir kütle kromatogramında grafiksel olarak temsil edilmez. Bu veri sunumunun en yaygın kullanımı, kütle spektrometrisinin sıvı kromatografi - kütle spektrometrisi veya gaz kromatografisi - kütle spektrometrisi gibi bazı kromatografi formları ile birlikte kullanıldığı zamandır. Bu durumda, x ekseni, diğer herhangi bir kromatograma benzer şekilde tutma süresini temsil eder. Y ekseni, sinyal yoğunluğunu veya göreceli sinyal yoğunluğunu temsil eder. Her bir kütle spektrumundan hangi bilgilerin çıkarıldığına bağlı olarak, bu yoğunluğun temsil edebileceği birçok farklı ölçüm türü vardır.

Seçilmiş iyon izleme , tam spektrum aralığının aksine cihaz tarafından yalnızca sınırlı bir kütle-yük oranı aralığının iletildiği/saptandığı bir kütle spektrometrisi tarama modudur. Bu çalışma modu tipik olarak önemli ölçüde artan hassasiyetle sonuçlanır. Doğası gereği bu teknik, kuadrupol kütle spektrometrelerinde ve Fourier dönüşümü iyon siklotron rezonans kütle spektrometrelerinde en etkili ve bu nedenle en yaygın olanıdır.

<span class="mw-page-title-main">Elektron transfer ayrışması</span>

Elektron transfer ayrışması, ardışık kütle spektrometrisinin (MS/MS) aşamaları arasında bir kütle spektrometresinde çok yüklü gaz makromoleküllerin parçalanmasına yönelik bir yöntemdir. Elektron yakalama ayrışmasına benzer şekilde ETD, büyük, çok yüklü katyonların parçalanmasına onlara elektronlaraktararak neden olur. ETD, dizi analizi için polimerler, proteinler ve peptidler gibi biyolojik moleküller ile yaygın olarak kullanılır. Bir elektronun aktarılması, peptid omurgasının c- ve z-iyonlarına bölünmesine neden olurken, translasyon sonrası modifikasyonlar değişmez. Teknik yalnızca daha yüksek yük sahibi peptid veya polimer iyonları (z>2) için iyi çalışır. Bununla birlikte, çarpışmaya bağlı ayrışmaya (CID) göre ETD, daha uzun peptitlerin veya hatta proteinlerin tümünün parçalanması açısından avantajlıdır. Bu durum, tekniği üst-alt proteomik için önemli kılar. Yöntem, Virginia Üniversitesi' nden Hunt ve arkadaşları tarafından geliştirildi.

Kütle spektrometrisinde görüntü akımı, iyonların bir metal yüzeye yaklaşarak oluşturduğu görüntü yükündeki artışa denir.