İçeriğe atla

Kütle (kütle spektrometrisi)

JJ Thomson, kütle spektrometrisini kullanarak neon izotoplarını keşfetti.

Bir kütle spektrometresi tarafından kaydedilen kütle, aletin özelliklerine ve kütle spektrumunun görüntülenme şekline bağlı olarak farklı fiziksel büyüklükleri ifade edebilir.

Birimler

Dalton (sembol: Da), kütleyi atomik veya moleküler ölçekte (atomik kütle) belirtmek için kullanılan standart birimdir.[1] Birleşik atomik kütle birimi (sembol: u) daltona eşdeğerdir. Bir dalton, yaklaşık olarak tek bir proton veya nötronun kütlesidir.[2] Atomik kütle birimi 1,660538921(73)×10-27 kg değerine sahiptir.[3] "Birleştirilmiş" ön eki olmayan amu, 1961'de değiştirilen, oksijene dayalı eski bir birimdir.

Moleküler kütle

Kafeinin moleküler iyonu için teorik izotop dağılımı

Bir maddenin moleküler kütle (kısaltıltması Mr) birleşik atomik kütle birimi u' ya göre o maddenin bir molekülünün kütlesidir. Bu görelilik nedeniyle, bir maddenin moleküler kütlesi genellikle nispi moleküler kütle olarak adlandırılır ve Mr olarak kısaltılır. Daha önceleri moleküler ağırlığı olarak adlandırılırdı ve MW olarak kısaltılırdı.

Ortalama kütle

Bir molekülün ortalama kütlesi, kurucu elementlerin ortalama atom kütlelerinin toplanmasıyla elde edilir. Örneğin doğal ortalama kütlesi su, H2O formülü ile, 1,00794 + 1,00794 + 15,9994 = 18,01528 Da'dır.

Kütle Numarası

Nükleon numarası olarak da adlandırılan kütle numarası, bir atom çekirdeğindeki proton ve nötron sayısıdır. Kütle numarası, bir elementin her izotopu için benzersizdir ve element adından sonra veya element sembolünün soluna bir üst simge olarak yazılır. Örneğin, karbon-12 (12C) 6 proton ve 6 nötron içerir.

Nominal kütle

Bir elementin nominal kütlesi, doğal olarak en bol bulunan kararlı izotopunun kütle numarasıdır ve bir iyon veya molekül için nominal kütle, kurucu atomların nominal kütlelerinin toplamıdır.[4][5]

Kesin kütle

Kesin kütle (daha uygun olarak, ölçülen kesin kütle[6]), elemental bileşimin belirlenmesine izin veren deneysel olarak belirlenmiş bir kütledir.[7] 200 Da'nın altında kütleye sahip moleküller için, elemental bileşimi benzersiz bir şekilde belirlemek amacıyla 5 ppm kesinlik genellikle yeterlidir.[8]

Tam kütle

Bir izotopik türün tam kütlesi (daha uygun bir şekilde, hesaplanan tam kütlesi[6]) molekülün tek tek izotoplarının kütlelerinin toplanmasıyla elde edilir.

Monoizotopik kütle

Monoizotopik kütle, her element için temel (en bol) izotopun bağlanmamış, temel haldeki durgun kütlesini kullanan bir moleküldeki atom kütlelerinin toplamıdır.[5][9] Bir molekülün veya iyonun monoizotopik kütlesi, temel izotoplar kullanılarak elde edilen tam kütledir. Monoizotopik kütle tipik olarak dalton cinsinden ifade edilir.

En bol kütle

Glukagon moleküler iyonu için teorik izotop dağılımı (C153H224N42O 50S)

Bu terim, izotopların doğal bolluğuna bağlı olarak en yüksek oranda temsil edilen izotop dağılımına sahip molekül kütlesini ifade eder.[10]

Kendrick kütlesi

Kendrick kütlesi, ölçülen kütlenin sayısal bir faktörle çarpılmasıyla elde edilen bir kütledir. Kendrick kütlesi, benzer kimyasal yapıdaki moleküllerin kütle spektrumlarındaki zirvelerden tanımlanmasına yardımcı olmak için kullanılır.[11][12] Bu kütle belirtme yöntemi 1963'te kimyager Edward Kendrick tarafından önerildi.

Kaynakça

  1. ^ Bureau International des Poids et Mesures (2019): The International System of Units (SI) 26 Temmuz 2020 tarihinde Wayback Machine sitesinde arşivlendi., 9th edition, English version, page 134. Available at the BIPM website 19 Nisan 2021 tarihinde Wayback Machine sitesinde arşivlendi..
  2. ^ "2". Biochemistry. 3rd print, 6th. New York: Freeman. 2007. s. 35. ISBN 978-0-7167-8724-2. 
  3. ^ "Fundamental Physical Constants from NIST". 9 Ekim 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Ekim 2020. 
  4. ^ Mass Spectrometry: A Textbook. Springer Science & Business Media. 14 Şubat 2011. ss. 71-. ISBN 978-3-642-10709-2. 13 Nisan 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Ekim 2020. 
  5. ^ a b Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation. John Wiley & Sons. 9 Temmuz 2013. ss. 385-. ISBN 978-1-118-68158-9. 13 Nisan 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Ekim 2020. 
  6. ^ a b Mass Spec Desk Reference. 2nd. s. 60. ISBN 0-9660813-9-0. 
  7. ^ Grange AH (2005), Using a triple-quadrupole mass spectrometer in accurate mass mode and an ion correlation program to identify compounds, 19 (18), ss. 2699-715, doi:10.1002/rcm.2112, PMID 16124033, 17 Ekim 2020 tarihinde kaynağından arşivlendi, erişim tarihi: 15 Ekim 2020 
  8. ^ Gross (1994), Accurate Masses for Structure Confirmation, 5 (2), s. 57, doi:10.1016/1044-0305(94)85036-4, PMID 24222515 
  9. ^ Monoisotopic mass spectrum. 2009. doi:10.1351/goldbook.M04014. ISBN 978-0-9678550-9-7. 
  10. ^ Goraczko AJ (2005), Molecular mass and location of the most abundant peak of the molecular ion isotopomeric cluster, 11 (4–5), ss. 271-7, doi:10.1007/s00894-005-0245-x, PMID 15928922 
  11. ^ Kendrick (1963), A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds, 35 (13), ss. 2146-2154, doi:10.1021/ac60206a048 
  12. ^ Marshall AG (Ocak 2004), Petroleomics: the next grand challenge for chemical analysis, 37 (1), ss. 53-9, doi:10.1021/ar020177t, PMID 14730994 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Element</span> aynı cins atomlardan oluşan ve kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddel

Element, aynı cins atomlardan oluşan ve kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere verilen isimdir.

<span class="mw-page-title-main">Hidrojen</span> sembolü H ve atom numarası 1 olan kimyasal element

Hidrojen, sembolü H, atom numarası 1 olan kimyasal bir element. Standart sıcaklık ve basınç altında renksiz, kokusuz, metalik olmayan, tatsız, oldukça yanıcı ve H2 olarak bulunan bir diatomik gazdır. 1,00794 g/mol'lük atomik kütlesi ile tüm elementler arasında en hafif olanıdır. Periyodik cetvelin sol üst köşesinde yer alır. Hidrojenin adı, Yunancada "su oluşturan" anlamına gelen ὑδρογόνο'dan (idrogono) kelimesinden gelir.

<span class="mw-page-title-main">Atom</span> tüm maddelerin kimyasal ve fiziksel özelliklerini taşıyan en küçük yapıtaşı

Atom veya ögecik, bilinen evrendeki tüm maddenin kimyasal ve fiziksel niteliklerini taşıyan en küçük yapı taşıdır. Atom Yunancada "bölünemez" anlamına gelen "atomos"tan türemiştir. Atomus sözcüğünü ortaya atan ilk kişi MÖ 440'lı yıllarda yaşamış Demokritos'tur. Gözle görülmesi imkânsız, çok küçük bir parçacıktır ve sadece taramalı tünelleme mikroskobu vb. ile incelenebilir. Bir atomda, çekirdeği saran negatif yüklü bir elektron bulutu vardır. Çekirdek ise pozitif yüklü protonlar ve yüksüz nötronlardan oluşur. Atomdaki proton sayısı elektron sayısına eşit olduğunda atom elektriksel olarak yüksüzdür. Elektron ve proton sayıları eşit değilse bu parçacık iyon olarak adlandırılır. İyonlar oldukça kararsız yapılardır ve yüksek enerjilerinden kurtulmak için ortamdaki başka iyon ve atomlarla etkileşime girerler.

Atom ağırlığı ya da bağıl atom kütlesi, belirli bir örnekteki bir elementin atomlarının ortalama kütlesinin atomik kütle sabitine oranı olarak tanımlanan boyutsuz bir fiziksel niceliktir. Atomik kütle sabiti, bir karbon-12 atomunun kütlesinin 1/12'si olarak tanımlanır. Orandaki her iki miktar da kütle olduğundan, ortaya çıkan değer boyutsuzdur; dolayısıyla değerin göreceli (bağıl) olduğu ifade edilir.

<span class="mw-page-title-main">İzotop</span> Aynı elemente ait farklı atomlara verilen isim

İzotoplar, periyodik tabloda aynı atom numarasına ve konuma sahip olan ve farklı nötron sayıları nedeniyle nükleon sayıları bakımından farklılık gösteren iki veya daha fazla atom türüdür. Belirli bir elementin tüm izotopları neredeyse aynı kimyasal özelliklere sahipken, farklı atomik kütlelere ve fiziksel özelliklere sahiptirler. İzotop terimi, "aynı yer" anlamına gelen Yunan kökenli isos ve topos 'den oluşur; isimin anlamı ise, tek bir elementin farklı izotoplarının periyodik tabloda aynı pozisyonda yer alması anlamına gelir. Margaret Todd tarafından 1913 yılında Frederick Soddy'ye öneri olarak sunulmuştur.

<span class="mw-page-title-main">Nötron</span> Yüke sahip olmayan atomaltı parçacık

Nötron, sembolü n veya n⁰ olan, bir atomaltı ve nötr bir parçacıktır. Proton ile birlikte, atomun çekirdeğini meydana getirir. Bir yukarı ve iki aşağı kuark ve bunların arasındaki güçlü etkileşim sayesinde oluşur. Proton ve nötron yaklaşık olarak aynı kütleye sahiptir fakat nötron daha fazla kütleye sahiptir. Nötron ve protonun her ikisi nükleon olarak isimlendirilir. Nükleonların etkileşimleri ve özellikleri nükleer fizik tarafından açıklanır. Nötr hidrojen atomu dışında bütün atomların çekirdeklerinde nötron bulunur. Her atom farklı sayıda nötron bulundurabilir. Proton ve nötronlar, kuarklardan oluştukları için temel parçacık değildirler.

<span class="mw-page-title-main">Molekül kütlesi</span>

Bir kimyasal bileşiğin molekül kütlesi, bu bileşiğin bir molekülünün birleşik atom kütle birimi u cinsinden kütlesidir. Bağıl bir değer olduğundan bir maddenin molekül kütlesine yaygın olarak bağıl moleküler kütle denir ve Mr. diye de kısaltılır.

<span class="mw-page-title-main">Nüklit</span>

Nüklit ya da nükleer tür; atom numarası (Z), kütle numarası (A) ve nükleer enerji durumuna göre nitelenen herhangi bir atom türüdür. Bu nitelemede; atom numarasını oluşturan proton sayısı ve proton sayısıyla birlikte kütle numarasını oluşturan nötron sayısı (N) değerlendirilirken, söz konusu enerji durumunun yarı ömrü de gözlem yapmayı sağlayacak kadar (genellikle 10-10 saniyeden) uzun olmalıdır.

Dalton atom modeli, John Dalton'un 1805 yılında bugünkü atom modelinin ilk temellerini attığı modelidir. Katlı oranlar yasasını bulmuştur. Dalton'un atom kuramına göre elementler, kimyasal bakımdan birbirinin aynı olan atomlar içerirler. Farklı elementlerin atomları birbirinden farklıdır. Bu atom teorisine göre kimyasal bir bileşik, iki veya daha çok sayıda elementin basit bir oranda birleşmesi sonucunda meydana gelir. Kimyasal tepkimelere giren maddeler arasındaki kütle ilişkilerine istinaden, Dalton atomların bağıl kütlelerini de bulmuştur.

<span class="mw-page-title-main">Atom çekirdeği</span> Atomun çekim kuvvetinin etkisiyle, çevresinde elektronlar dolaşan, proton ve nötronlardan oluşan pozitif elektron yüklü merkez bölümü

Atom çekirdeği, atomun merkezinde yer alan, proton ve nötronlardan oluşan küçük ve yoğun bir bölgedir. Atom çekirdeği 1911 yılında Ernest Rutherford tarafından keşfedildi. Bu keşif, 1909 yılında gerçekleştirilen Geiger-Marsden deneyine dayanmaktadır. Nötronun James Chadwick aracılığıyla 1932 yılında keşfinden sonra, çekirdeğin proton ve nötronlardan oluştuğu modeli Dmitri Ivanenko ve Werner Heisenberg tarafından çabucak geliştirildi. Atomun kütlesinin neredeyse tamamı çekirdek içerisindedir, elektron bulutunun atom kütlesine katkısı oldukça azdır. Proton ve nötronlar çekirdek kuvveti tarafından çekirdeği oluşturmak için birbirlerine bağlanmıştır. 

<span class="mw-page-title-main">Atomik kütle birimi</span> bir karbon-12 atomunun kütlesinin ¹⁄₁₂si olarak tanımlanan kütle birimi

Atomik kütle birimi (sembolü akb) veya dalton (sembolü Da), çok ufak kütleli maddelerin, özellikle atom ve moleküllerin kütlelerini hesaplamak için kullanılan ölçü birimidir. Bir karbon12 (C12) atomunun kütlesinin tam olarak 1/12'sine eşittir. Bunun sebebi, karbonun en kararlı ve en kolay bulunabilen elementlerden biri olmasıdır.

<span class="mw-page-title-main">Nükleer fizik</span> atom çekirdeğinin yapısı ve davranışı ile uğraşan fizik alanı

Nükleer fizik veya çekirdek fiziği, atom çekirdeklerinin etkileşimlerini ve parçalarını inceleyen bir fizik alanıdır. Nükleer enerji üretimi ve nükleer silah teknolojisi nükleer fiziğin en çok bilinen uygulamalarıdır fakat nükleer tıp, manyetik rezonans görüntüleme, malzeme mühendisliğinde iyon implantasyonu, jeoloji ve arkeolojide radyo karbon tarihleme gibi birçok araştırma da nükleer fiziğin uygulama alanıdır.

Nükleer bağlanma enerjisi, atomun çekirdeğini bileşenlerine ayırmak için gereken enerjidir. Bu bileşenler nötron, proton ve nükleondur. Bağ enerjisi genelde pozitif işaretlidir çünkü çoğu çekirdek parçalara ayrılmak için net bir enerjiye ihtiyacı vardır. Bu yüzden, genelde bir atomun çekirdeğinin kütlesi ayrı ayrı ölçüldüğünde daha azdır. Bu fark nükleer bağlanma enerjisidir ki bu enerji birbirini tutan bileşenlerin uyguladığı kuvvet tarafından sağlanır. Çekirdeği bileşenlerine ayırırken, kütlenin bir kısmı büyük bir enerjiye dönüştürülür bu yüzden bir kısım kütle eksilir, eksik kütlede bir fark yaratır çekirdekte. Bu eksik kütle, kütle eksiği diye bilinir ve çekirdek oluşurken çıkan enerjiye takabül eder.

<span class="mw-page-title-main">Enstrümental kimya</span>

Enstrümental analiz, analitleri bilimsel aletler (enstrümanlar) kullanarak inceleyen analitik kimya alanı.

<span class="mw-page-title-main">Atom teorisi</span> maddenin doğası üzerine bir bilimsel teori

Kimya ve fizik biliminde atom teorisi; maddenin atom adı verilen süreksiz ve ayrık yapılardan oluştuğunu belirten, maddenin doğası üzerine bir bilimsel teoridir. Antik yunanda felsefi bir kavram olarak başlayan bu düşünce, 19. yy başlarında kimya alanındaki keşiflerin de maddenin gerçekten atomlardan oluştuğunu destekleyen bulgularıyla kendisine ana akım bilimde yer edinmiştir.

<span class="mw-page-title-main">Kütle spektrometrisi</span> Kütle ölçer

Kütle spektrometrisi, İngilizce: Mass spectrometry (MS), kimyasal türleri iyonize edip oluşan iyonları Kütle-yük oranını esas alarak sıralayan bir analitik teknik. Daha basit terimler ile, bir kütle spektrumu bir numunen içindeki kütleleri ölçer. Kütle spektrometrisi birçok farklı alanda kullanılır ve kompleks karışımlara uygulandığı kadar saf numunelere de uygulanır.

<span class="mw-page-title-main">Tam sayı kuralı</span> İzotop kütlesi için fizik kanunu

Tam sayı kuralı, izotopların kütlelerinin, hidrojen atomu kütlesinin tam sayı katları olduğunu belirtir. Kural, atom ağırlığının hidrojen atomunun ağırlığının katları olması etkisiyle, 1815'te önerilen Prout'un hipotezinin değiştirilmiş bir versiyonudur. Ayrıca keşfi ile 1922 yılında Nobel Kimya Ödülünü kazanan Francis W. Aston sebebiyle Aston tam sayı kuralı olarak da bilinir. Kütle spektografıyla, izotopları, çok sayıda radyoaktif olmayan elementleri ve tam sayı kuralını keşfetmiştir.

Hızlandırıcı kütle spektrometrisi, kütle analizinden önce iyonları olağanüstü yüksek kinetik enerjilere hızlandıran bir kütle spektrometresi biçimidir. AMS'nin kütle spektrometrik yöntemler arasındaki özel gücü, nadir bir izotopu komşu bir kütleden ayırma gücüdür. Yöntem moleküler izobarları tamamen bastırır ve birçok durumda atomik izobarları da ayırabilir. Bu, 10Be, 36Cl, 26Al ve 14C gibi doğal olarak oluşan, uzun ömürlü radyo izotoplarının tespitini mümkün kılar. AMS, yarılanma ömrü yeterince uzun olan tüm izotoplar için bozunma sayma tekniğinden daha iyi performans gösterebilir.

<span class="mw-page-title-main">Çarpışmaya bağlı ayrışma</span>

Çarpışmaya bağlı ayrışma, gaz fazında seçilen iyonların parçalanmasını indüklemek için bir kütle spektrometresi tekniğidir. Seçilen iyonlar genellikle iyon kinetik enerjisini artırmak amacı ile bir elektrik potansiyeli uygulanarak hızlandırılır ve daha sonra nötr moleküllerle çarpışmalarına izin verilir. Çarpışmada kinetik enerjinin bir kısmı iç enerjiye dönüştürülür, bu da bağ kırılmasına ve moleküler iyonun daha küçük parçalara parçalanmasına neden olur. Bu fragman iyonları daha sonra ardışık kütle spektrometresi ile analiz edilebilir.

Monoizotopik kütle (Mmi), kütle spektrometrisinde kullanılan çeşitli moleküler kütle türlerinden biridir. Bir molekülün teorik monoizotopik kütlesi, moleküldeki her bir atomun doğal olarak en bol bulunan kararlı izotopunun doğru kütlelerinin toplamı alınarak hesaplanır. Düşük atom numaralı elementlerden oluşan küçük moleküller için monoizotopik kütle, kütle spektrumunda izotopik olarak saf bir tepe noktası olarak gözlemlenebilir.