İçeriğe atla

Kütleçekimsel çökme

Bir yıldızın kütleçekimsel çöküşü
NGC 6745

Kütleçekimsel çökme astronomik objelerin sahip olduğu kütleçekim etkisinden dolayı diğer objeleri kendi merkezine doğru çekmesidir. Herhangi bir stabil objede bu kütleçekim tam tersi yönünde etkileyen iç basınç ile karşılıklı olarak dengelenmektedir. Eğer kütleçekim dışarı yönde etkiyen iç basınçtan daha fazla olursa bu denge durumu bozulur ve madde içeri doğru çökmeye başlar. Bu çöküş iç basıncı artırıp maddeyi kütleçekim ile dengeleyecek noktaya gelene kadar devam eder. Bu durum böylece devam eder. (Kara deliklerdeki durum hariç olmak kaydı ile.)

Kütleçekimnin diğer ana güçlerden daha zayıf olması nedeni ile kütleçekimsel çöküş çoğunlukla çokça ağır cisimler veya kütlelerin toplamı ile ilişkilendirilmektedir. Örneğin, yıldızlar (Süpernova patlaması ile oluşan yıldızlar, nötron yıldızları ve kara delikler) ve küresel küme şeklinde olan devasa yıldız koleksiyonları ve galaksiler.

Kütleçekimsel çökme evrendeki maddelerin kalbindeki yapısal formasyondadır. En başta düzgün sıralanmış bir maddeler dizesi bile sonunda çökebilir ve maddelerin hiyerarşisinde karmaşaya sebep olabilir. (Galaksideki küresel kümeler, yıldız kaynaklı gruplar, yıldızlar ve gezegenler.) Örnek vermek gerekecek olursa, yıldızlarasındaki maddelerin kütleçekimsel çöküşlerindeki artış sebebiyle oluşan yıldızlar örnek verilebilir. Kütleçekimsel çökme kuvvetinden dolayı kaynaklanan basınç sıcaklığı artırır ve ve nükleer yakıt yıldızın merkezini ateşler ve yıldız bunun sonrasında bir duruş noktasına gelir. İçeriden dışarıya doğru etki etmekte olan termal basınç kütleçekim dengeler ve yıldızımız tekrar termal basınç ve kütleçekimnin arasında bulunan dinamik denge kurumuna gelerek stabilleşir.

Bir yıldızın kütleçekimsel çöküşü hayat döngüsünün sonunda gerçekleşir ve bu yıldıza ölmüş yıldız da denilebilir. Yıldızda bulunan tüm enerji tükendiğinde yıldızımız kütleçekimin etkisine girer. Bu sebepten dolayı 'geçici' denge durumunda bulunan yıldız, yıldız doğumlu bir kütleçekimsel çöküş veya bir yıldızın sonu olur.Bu son durumuna sıkışık yıldız veya yıldızsal kalıntı adı verilir.

Sıkışık yıldız Çeşitleri:

  • Beyaz Cüceler; kütleçekim, dejenere elektron basıncı ile dengelenir.
  • Nötron yıldızları; kütleçekim, dejenere nötron basıncı ve güçlü kuvvetlerin aracılık ettiği kısa-menzilli itmeler yani nötron-nötron etkileşimleri ile dengelenir.
  • Kara delikler, merkezindeki fiziksel durum hakkında bir bilgiye sahip değiliz.

Beyaz cüceye çöküş süreci on binlerce yıl sürmektedir ve yıldızı çevrelemekte olan dış yüzeyin gezegenimsi bulut haline dönüşü bu süre içinde gerçekleşmektedir. Eğer sıkışan yıldız, beyaz cüce boyutuna gelir ve Chandasekhar limitine kadar bu madde birleşmeye devam ederse çöküş süreci tekrar sürecini yeniden başlatır. Her ne kadar beyaz cücenin bir sonraki aşama olan nötron yıldızı aşamasına geçeceği öngörülse de bunun yerine kontrolsüz bir karbon füzyon tepkimesi sürecine girebilir ve bir süpernova patlaması gibi patlayabilir.Nötron yıldızları çok güçlü kütleçekimsel çökme kuvveti sonucu oluşan devasa yıldızlardır ve süpernova patlaması kalıntılarıdırlar.

Büyük devasa yıldızlar bile Tolman-Oppenheimer-Volkoff limiti altında bilinen karşıt bir kütleçekim kuvveti olmadan yeni bir dinamik denge durumuna geri dönemez. Bu durumda bile yıldız devam eder ve hiçbir şey onu durduramaz. Schwarzschild yarıçapı ile patladığında ise bir ışık parçacığı bile bu yıldızdan kaçamaz ve yıldızımız Kara Delik haline gelir. Bazı teorilere göre bu kara delik sürecinden sonra patlayan obje maksimum olasılıklı enerji yoğunluğuna ulaşır ve belli bir hacimdeki Plank Özkütlesine ulaşır. (Yani hiçbir şey durduramaz.) İşte bu noktada bilinen kütleçekimsel yasalar bir açıklama oluşturamaz. Her ne kadar bu anı açıklamaya yönelik rekabet halinde teoriler olsa da bu noktadaki durum tam anlamı ile kütleçekimsel çöküş olarak tanımlandırılamaz.[1]

Yeteri kadar büyük olan nötron yıldızının Scwarzschild yarıçapı içinde varolabileceği düşünülmüş ve bir kara delik gibi tüm ağırlığın merkezindeki tekillikte toplanmamış olabileceği öne sürülmüştür fakat bu bir kavram hatasıdır. Olay ufkunda bile bir madde stabil kalabilmek ve merkeze çökmemeyi sağlayabilmek için merkezden dışarı doğru ışık hızından daha yüksek bir değerdeki hıza sahip olmalıdır.Bu sebepten dolayı hiçbir fiziksel güç bir yıldıza tekilliğe çökmekten alıkoyamaz. (En azından en son bildiğimiz genel görelilik prensiplerine göre; bu Einstein-Yang-Mills-Dirac'ın sisteminin yerine geçmemektedir.) Sonrasında maddenin emisyonunu ve kütleçekimsel dalgaları içeren ortak bir küresel olmayan çarpışma modeli yayınlanmıştır.[2]

Ayrıca bakınız

Kaynakça

  1. ^ "Arşivlenmiş kopya". 16 Eylül 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Ocak 2015. 
  2. ^ Bedran, ML et al.(1996)."Model for nonspherical collapse and formation of black holes by emission of neutrinos, strings and gravitational waves", Phys. Rev. D 54(6),3826.

İlgili Araştırma Makaleleri

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

<span class="mw-page-title-main">Pauli dışarlama ilkesi</span> Kuantum mekaniği prensibi: iki özdeş fermiyon aynı anda, aynı kuantum halinde bulunamazlar.

Pauli dışarlama ilkesi ya da Pauli dışlama ilkesi, iki ya da daha çok özdeş fermiyonun aynı kuantum durumda olamayacağını belirten bir kuantum mekaniği yasasıdır. Bu yasa, kuramsal fizikçi Wolfgang Pauli tarafından 1925 yılında bulunmuştur. İlk bulunuşunda yasa yalnızca elektronlar için geçerliyken, 1940 yılında Spin-istatistik teoreminin bulunmasıyla birlikte bütün fermiyonları kapsayacak biçimde genişletilmiştir.

<span class="mw-page-title-main">Beyaz cüce</span> bir yıldızın yaşam döngüsünde ışık saçtığı son halinden bir önceki hali

Beyaz cüce, termonükleer reaksiyonların meydana geldiği aşamadan sonra orta kütleli bir yıldızın evriminden kaynaklanan küçük ama yüksek yoğunluğa sahip yaşlı bir yıldızdır. Yüksek yüzey sıcaklığına rağmen çok düşük bir parlaklığa sahiptir ve bu nedenle Hertzsprung-Russell diyagramında ana kolun çok aşağısında yer alır. Kütlesi 8 kata kadar azaldığı halde yüksek yüzey sıcaklığını uzun süre koruduğundan "beyaz cüce" olarak adlandırılır.

<span class="mw-page-title-main">Nötron yıldızı</span> dev yıldızların ölümünden sonra arda kalan yoğun nötron topu

Nötron yıldızı, yıldızların yaşamlarının son bulabileceği biçimlerden biridir. Bir nötron yıldızı, dev bir yıldızın Tip II, Tip Ib veya Tip Ic süpernova olarak patladıktan sonra geri kalan kısmın kendi içine çökmesiyle oluşur. Bu yıldızlar neredeyse tamamen nötronlardan oluşsa da az miktarda proton ve elektron da içerir. Bu proton ve elektronlar olmadan, nötron yıldızları uzun süre var olmaya devam edemezdi. Çünkü nötronlar serbest haldeyken kararsızdır ve beta ışıması yaparak kısa süre içinde proton ve elektronlara ayrışır. Ancak yıldızın içindeki yüksek basınç sebebiyle proton ve elektronların birleşerek nötronlara dönüşmesi, nötron yıldızlarının daha kararlı bir yapıya sahip olmasını sağlar.

<span class="mw-page-title-main">Büyük Çöküş</span> Rus bilim adamı Aleksandr Fridman tarafından ortaya atılan evrenin sonunun nasıl olacağına dair bir senaryo

Büyük Çöküş, evren biliminde Evren'in nasıl sonlanacağıyla ilgili üç olası senaryodan biridir. Bu üç senaryo, Rus bilim insanı Aleksandr Fridman tarafından 1922 yılında ortaya atılmıştır. Büyük Çöküş Senaryosu'na göre Evren'in genişlemesi, kütleçekimi etkisiyle giderek yavaşlayarak, Evren'in genişleme hızı ve Evren'deki toplam kütle miktarına göre belirli bir gelecekte duracak ve daha sonra da içine çökmeye başlayarak başlangıç anındakine benzer bir tekilliğe dönecektir.

<span class="mw-page-title-main">Kara delik</span> çekim alanı her türlü maddesel oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, genellikle yüksek kütleli gök cismi

Kara delik; astrofizikte, çekim alanı her türlü maddesel oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, büyük kütleli bir gök cismidir. Kara delik, uzayda belirli nitelikteki maddenin bir noktaya toplanması ile meydana gelen bir nesnedir de denilebilir. Bu tür nesneler ışık yaymadıklarından kara olarak nitelenirler. Kara deliklerin "tekillik"leri nedeniyle, üç boyutlu olmadıkları, sıfır hacimli oldukları kabul edilir. Kara deliklerin içinde ise zamanın yavaş aktığı veya akmadığı tahmin edilmektedir. Kara delikler Einstein'ın genel görelilik kuramıyla tanımlanmışlardır. Doğrudan gözlemlenememekle birlikte, çeşitli dalga boylarını kullanan dolaylı gözlem teknikleri sayesinde keşfedilmişlerdir. Bu teknikler aynı zamanda çevrelerinde sürüklenen oluşumların da incelenme olanağını sağlamıştır. Örneğin, bir kara deliğin potansiyel kuyusunun çok derin olması nedeniyle yakın çevresinde oluşacak yığılma diskinin üzerine düşen maddeler diskin çok yüksek sıcaklıklara erişmesine neden olacak, bu da diskin yayılan x-ışınları sayesinde saptanmasını sağlayacaktır. Günümüzde, kara deliklerin varlığı, ilgili bilimsel topluluğun hemen hemen tüm bireyleri tarafından onaylanarak kesinlik kazanmış durumdadır.

Kuark yıldızı, son derece yüksek çekirdek sıcaklığı ve basıncının çekirdek parçacıklarını, başıboş kuarklardan oluşan sürekli bir madde hali olan kuark maddesini oluşturmaya zorladığı, varsayımsal bir sıkışık, egzotik yıldız türüdür.

Sıkışık yıldız veya sıkışık nesne, gökbiliminde beyaz cüceleri, nötron yıldızlarını ve karadelikleri toplu olarak tanımlamak için kullanılır. Ayrıca, varsayımsal yoğun cisimlerin varlığı doğrulanırsa egzotik yıldızları da içerebilir. Tüm sıkışık nesneler yarıçaplarına oranla daha büyük bir kütleye sahiptir ve bu da onlara, sıradan atomik maddeye kıyasla çok yüksek bir yoğunluk kazandırır.

Yıldız evrimi bir yıldızın yaşamı boyunca maruz kaldığı radikal değişikliklerin bir sürecidir. Yıldız'ın kütlesine bağlı olarak bu yaşam süresi, birkaç milyon yıldan, trilyonlarca yıla ulaşabilir, evrenin yaşı göz önüne alındığında bu çok fazladır.

<span class="mw-page-title-main">Kataklizmik değişen yıldızlar</span>

Kataklizmik değişen yıldız (CV), kütle kazanan bir dejenere yıldız ve ona kütle veren büyük bir yoldaştan oluşan yarı ayrık çift sistemlerdir.

Büyük kütleli sıkı halo cisimleri veya MACHO (ing-Massive compact halo object), gökada halesindeki baryon kökenli karanlık maddenin en ciddi adayı.

<span class="mw-page-title-main">Chandrasekhar limiti</span>

Chandrasekhar limiti, astrofizikte kararlı bir beyaz cücenin sahip olabileceği en büyük kütledir. Bu limiti ilk defa Wilhelm Anderson ve E. C. Stoner hesaplamış, ancak adını bu hesapları 1930 yılında daha hassas olarak yapan Subrahmanyan Chandrasekhar'dan almıştır.

Dejenere elektron basıncı, kuantum elektron basıncı olgusundan daha genel olan bir basınçtır. Pauli dışlama ilkesi, bir atomda iki fermiyonun aynı anda tamamen aynı kuantum sayılarına sahip olmasına izin vermemektedir. Sonuçta aniden ortaya çıkan basınç, maddenin daha küçük hacimlerde sıkıştırılmasına karşı koyar. Dejenere elektron basıncı, saf bir maddenin elektron yörünge yapısı olarak tanımlanan, aynı temel mekanizmadan kaynaklanmaktadır. Freeman Dyson, katı maddelerin geçirmezliğinin önceden kabul edilmiş olan elektrostatik iteleme yerine, dejenere kuantum basıncından kaynaklandığını göstermiştir. Ayrıca, dejenere elektron basıncı yıldızların nükleer füzyonu dindiğinde kendi ağırlığı altında çökmesini engellemektedir. Yeterli büyüklükteki yıldızların çöküşünü engellemek için dejenere elektron basıncı yetersiz kalmaktadır ve nötron yıldızı oluşmaktadır. Bu durumda ise, dejenere nötron basıncı yıldızların daha fazla çökmesini engeller.

Egzotik yıldız, elektron, proton, nötron ya da müonlardan farklı parçacıklardan oluşan ve kütleçekimsel çökmeye karşı yozluk basıncı ve diğer kuantum özellikleri sayesinde karşı gelebilen kuramsal bir sıkışık yıldızdır. Kuarklardan oluşan kuark yıldızları, belki de yukarı, aşağı ve garip kuarkların yoğuşmasından oluşmuş garip maddeden oluşan garip yıldızlar ve muhtemelen, eğer kuark alt parçacıklara ayrışabilirse onların yapıtaşlarını oluşturacak olan kuramsal preonlardan oluşan preon yıldızlarını içerir.

<span class="mw-page-title-main">X ışını ikilisi</span>

X-ışını ikilileri, X-ışınlarında aydınlık olan ikili yıldızların bir sınıfıdır. X-ışınları bir maddenin verici denilen (genellikle normal bir yıldızın) bir bileşeninden bir beyaz cücenin, nötron yıldızının ya da kara deliğin sıkıştırılmasından oluşan kütle alıcı denilen diğer bileşenine düşmesiyle üretilir. Birbirlerini çeken madde X-ışınları gibi, geriye kalan kütlesinin birkaç ondalığı kadar, yerçekimi potansiyel enerjisini serbest bırakır. (Hidrojen füzyon, geriye kalan kütlenin sadece yüzde 0.7sini serbest bırakır.) Tipik sabit düşük kütleli bir X-ışını ikilisinden saniyede tahmini 1041 pozitron kaçmaktadır.

<span class="mw-page-title-main">Yıldız kaynaklı kara delik</span>

Yıldız kaynaklı kara delik, bir yıldızın kütleçekimsel çöküşüyle oluşan bir kara deliktir. Kütleleri yaklaşık 5 ila birkaç on güneş kütlesi arasında değişir. Bunlar süpernova patlamalarının kalıntılarıdır ve bir tür gama ışını patlaması olarak gözlemlenebilirler. Bu kara deliklere ayrıca çökmüş yıldız (collapsar) olarak da atıfta bulunulur.

Süpernova nükleosentezi kuramı, süpernova patlamalarındaki farklı pek çok kimyasal elementin nasıl üretildiğini açıklamaya çalışır. İlk kez 1954 yılında Fred Hoyle tarafından geliştirilmiştir. Nükleosentez, diğer bir deyişle hafif elementlerin ağır elementlere ergimesi, patlayıcı oksijenin yanması ya da silikonun yanması esnasında ortaya çıkar. Bu birleşme tepkimeleri, silikon, sülfür, klor, argon, sodyum, potasyum, kalsiyum, skandiyum, titanyumun yanı sıra, vanadyum, krom, manganez, demir, kobalt ve nikel gibi demir zirve elementlerinin oluşumuna yol açar. Büyük yıldızlarda saf hidrojen ve helyumdan ergiyebildikleri için bunlara “primer elementler” denir. Süpernovalardan atılımları sonucu, yıldızlararası ortamda bollukları artar. Nikelden ağır elementler, r-süreci denen bir süreçte nötronların hızlı bir biçimde tutulmasıyla ortaya çıkarlar. Ancak bunlar primer kimyasal elementlerden oldukça azdır. Yetersiz miktarda bulunan ağır elementlerin nükleosentezine yol açtığı düşünülen diğer süreçler, rp-süreci olarak bilinen proton yakalanması ve gamma süreci olarak bilinen ışıl parçalanmadır. Işıl parçalanma, ağır elementlerin en hafif ve en nötron fakiri izotoplarını sentezler.

<span class="mw-page-title-main">Helyum parlaması</span>

Helyum parlaması yaklaşık Güneş kütlesinde bir yıldızın kırmızı dev aşamasından sonra geçirdiği bir evredir. Yıldızın çekirdeğindeki helyum atomları çok kısa bir süreç içerisinde birbirleriyle üçlü alfa süreci ile kaynaşarak karbon atomlarına dönüşürler ve bu süreçte çok büyük enerji ortaya çıkar. Güneş anakol yıldızı olmaktan çıkıp kırmızı dev aşamasına geldikten yaklaşık 1,2 milyar yıl sonra helyum parlaması geçirecektir.

Yoz madde veya dejenere madde Pauli dışlama ilkesinin termal basınca ek olarak veya termal basınç yerine önemli bir basınç uyguladığı oldukça yoğun bir fermiyonik madde halidir. Tanım; elektronlar, protonlar, nötronlar veya diğer fermiyonlardan oluşan maddeler için geçerlidir. Terim esas olarak astrofizikte, yerçekimi basıncının kuantum mekanik etkilerinin önemli olduğu kadar aşırı olduğu yoğun yıldız nesnelerine atıfta bulunmak için kullanılır. Bu tür madde, termal basıncın tek başına yerçekimi çökmesini önlemek için yeterli olmadığı beyaz cüceler ve nötron yıldızları gibi son yıldız evrim hallerinde yıldızlarda doğal olarak bulunur.