r yarıçaplı bir küre üzerindeki herhangi bir P noktasının küresel koordinatlarla gösterimi
Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.
Küre üzerindeki bir nokta bu sistemde üç tane bileşenle ifade edilir, bunlar r, ve ' dir. Koordinatların tanımlı oldukları aralıklar ve tanımları şu şekilde verilir.
: Yarıçap P ve (0,0,0) noktası arasındaki uzaklıktır. Tanım aralığı olarak verilir.
: Enlem, z-ekseni ve çap arasındaki açıdır. aralığında tanımlıdır. Polar açı olarak da adlandırılır.
: Boylam, x-ekseni ile çapın xy-düzlemine izdüşümü () arasındaki açıdır. aralığında tanımlıdır. Diğer bir adı azimütal açıdır.
Bu sistem, dünya üzerinde coğrafi konum belirlerken kullanılan sistemdir. Dünya' nın yüzeyi üzerinde her noktada yarıçap aynı olduğundan, sadece enlem ve boylam ile bir yer belirlenebilir. Ayrıca fizikte küresel yapıya sahip sistemler, (dünya, güneş, yüklü bilye vs.) ele alınırken yine küresel koordinatlara geçiş yapılır. Küresel koordinatlarla Kartezyen koordinatlar arasındaki bağıntılar şu şekildedir.
Küresel koordinatlarda Laplasyen, diverjans ve gradyan Kartezyen koordinatlardakinden farklıdır. Jakobyen kullanılarak diferansiyel eleman hesaplanabileceği gibi şekilden de P noktası etrafında sonsuz küçük bir hacim elemanının büyüklüğü şu şekilde hesaplabilir.
Bu hacim elemanı bütün küre üzerinden integral alınarak R yarıçaplı kürenin hacmi bulunur.
Kalınlığı olmayan bir hacim elemanı,alan elemanı olacağından sonsuz küçük yüzey elemanı şu şekilde ele alınır.
Bu eleman bütün küre yüzeyi üzerinden integre edilirse R yarıçaplı kürenin alanı da bulunabilir.
Fizikte bu integraller herhangi bir yoğunluk fonksiyonuyla verilmiş elektrik ve yerçekimi alanındaki küreler için sıklıkla çözülür.
Küresel koordinatlarda integrasyon ve diferansiyasyon
Aşağıdaki denklemler varsayımı şu θ eğim z den (polar) axis (belirsiz x, y ve z ile karşılıklı olarak normaldir):
çizgisel öge için dan ya sonsuz yer değiştirmedir.
burada
yükselen yön içinde yerel ortogonal birim vektörlerdir, sırasıyla ve kartezyen uzay içinde birim vektörlerdir.
yüzey öge dan ya germe ve yarıçapta(sabit) bir küresel yüzey üzerinde ya dır
Böylece diferansiyel katı açı dir
Yüzey öge polar açının bir yüzeyi içinde sabit (başlangıç köşe ile bir koni) tir
güney açısının bir yüzey içinde yüzey ögesi sabit (bir dik yarı-düzlem) dir
Hacim ögesi dan ya geriliyor, ya ve ya is
Böylece, örnek için, bir fonksiyon üçkatlı integral ile R3 içinde her nokta üzerinde integrallenebilir
bu sistem içinde del işlemcisi tanımlı değildir ve böylece gradyan, diverjans ve curl açıkça tanımlanmış olmalıdır:
Kinematik
Bir noktanın küresel koordinatlar içinde konumu yazıldığında,
hız ise,
ve ivme,
Bir sabit φnın durumu içinde veya , bu kutupsal koordinatlar içinde vektör hesabına indirgenir.
Laplasyen, skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.
Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.
Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.
Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.
Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.
Görüntü yük yöntemi, elektrostatikte kullanılan bir soru çözüm tekniğidir. İsimlendirmenin kökeni problemdeki sınır koşullarını bazı sanal yükler ile değiştirme yönteminden gelir.
Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır
Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.
NOT: Bu sayfa küresel koordinatların fizik gösterimi içindir, z ekseni arasındaki açıdır.ve yarıçap vektörü söz konusu noktaya orijinden bağlantılıdır, bu açısı x-y düzlemi ve x ekseni ile vektör yarıçapının izdüşümü arası açıdır. Diğer bazı tanımları da kullanılıyor ve çok dikkatli farklı kaynaklardan karşılaştırarak alınmalıdır.
Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.
Bu bir Küresel harmonikler ortonormalize tablosudur ve Bu Condon-Shortley fazı l = 10 dereceye kadar sağlanır.Bazen bu formüllerin "Kartezyen" yorumu verilir.Bu varsayım x, y, z ve r Kartezyen-e-küresel koordinat dönüşümü yoluyla ve ye ilişkindir:
Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.
Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.
Matematikte, uzunluğu 1 olan ve uzayda bir norma sahip olan vektöre birim vektör denir. Birim vektör genellikle ‘û‘ gibi şapkalı ve küçük harflerle ifade edilir. Normalize vektör veya versor olmayan bir sıfır vektörü u ile eş yönlü olan birim vektörü u
18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.
Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.
Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.
Hamilton mekaniği klasik mekaniğin tekrar formüle edilmesiyle geliştirilmiş ve Hamilton olmayan klasik mekanik ile aynı sonuçları öngörmüş bir teoridir. Teoriye daha soyut bir bakış açısı kazandıran Hamilton mekaniği klasik mekaniğe kıyasla farklı bir matematiksel formülasyon kullanmaktadır. Tarihi açıdan önemli bir çalışma olan Hamilton mekaniği ileriki yıllarda istatistiksel mekanik ve kuantum mekaniği konularının da geliştirilmesine önemli katkılarda bulunmuştur.
Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.
Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.
Bu sayfa, bu Vikipedi makalesine dayanmaktadır. Metin, CC BY-SA 4.0 lisansı altında mevcuttur; ek koşullar uygulanabilir. Görseller, videolar ve sesler kendi lisansları altında mevcuttur.