İçeriğe atla

Köşeli yuvarlak

Orijinde ( a = b = 0 ) merkezli, r = 1 küçük yarıçaplı yuvarlatılmış dikdörtgen r = 1 : x4 + y4 = 1

Köşeli yuvarlak, kare ve daire arasındaki bir ara şekildir. Kullanımda olan en az iki "Köşeli yuvarlak" tanımı vardır ve bunların en yaygını süper elipse dayanmaktadır. Köşeli yuvarlaklar tasarım ve optikte uygulanmıştır.

Süper elips tabanlı köşeli yuvarlak

Kartezyen koordinat sisteminde, süper elips şu denklemle tanımlanır:Burada ra ve rb yarı-büyük ve yarı-küçük eksenlerdir, a ve b elipsin merkezinin x ve y koordinatlarıdır ve n pozitif bir sayıdır. O zaman yuvarlatılmış dikdörtgen ra = rb ve n = 4 olan bir süper elips olarak tanımlanır. Denklemi:[1]Burada r yuvarlatılmış dikdörtgenin küçük yarıçapıdır. Bunu bir çemberin denklemiyle karşılaştırın. Yuvarlatılmış dikdörtgen orijinde ortalandığında, a = b = 0 olur ve buna Lamé'nin özel dörtleniği denir.

Yuvarlatılmış dikdörtgen içindeki alan, gama fonksiyonu Γ cinsinden şu şekilde ifade edilebilir:[1]Burada r, yuvarlatılmış dikdörtgenin küçük yarıçapıdır ve = Gauss sabiti * 'dir.

p -norm gösterimi

R2 üzerinde p-norm ‖ · ‖p cinsinden, köşeli yuvarlak şu şekilde ifade edilebilir:Burada p = 4, xc = (a, b) köşeli yuvarlağın merkezini gösteren vektördür ve x = (x, y)'dir. Sonuç olarak, bu hala merkezden r mesafesindeki noktaların oluşturduğu bir "çember"dir, ancak mesafe farklı şekilde tanımlanır. Karşılaştıracak olunursa, alışılmış daire için p = 2'dir, oysa kare için p → ∞ verilir (supremum normu) ve döndürülmüş bir kare için p = 1 verilir (Manhattan normu). Bu R3 küresel bir kübe veya daha yüksek boyutlardaki hiper küresel küplere basit bir genelleme sağlar.[2]

Benzer şekiller

Yuvarlatılmış bir kareye (mavi) kıyasla bir köşeli yuvarlak (kırmızı). (Daha büyük görsel)
Çeşitli kesilmiş çember biçimleri

Kaynakça

  1. ^ a b Eric W. Weisstein, Köşeli yuvarlak (MathWorld)
  2. ^ Chamberlain Fong (2016). "Squircular Calculations". arXiv:1604.02174 $2. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

Geometri'de, bir küre'nin hacmi için bir özel durum n-boyutlu Euclid uzayı içindeki bir kürenin n-boyutlu hacmidir.

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

<span class="mw-page-title-main">Hiperbolik fonksiyon</span>

Matematikte, hiperbolik fonksiyonlar sıradan trigonometrik fonksiyonların analogudur. Temel hiperbolik fonksiyonlar hiperbolik sinüs "sinh", hiperbolik kosinüs "cosh", bunlardan türetilen hiperbolik tanjant "tanh" ve benzer fonksiyonlardır. Ters hiperbolik fonksiyonlar alan hiperbolik sinüsü "arsinh" ve benzeri fonksiyonlardır.

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

Matematik'te, çok değişkenli Gama fonksiyonu, Γp(·), Gama fonksiyonu'nun genelleştirilmiş şeklidir. Çokdeğişkenli istatistik'te kullanılır.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Özel fonksiyonların önemli bir bölümünü oluşturan hipergeometrik fonksiyonlar matematik, fizik, mühendislik ve olasılıkta karşımıza çıkar.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

<span class="mw-page-title-main">Trigonometrik integral</span> bir integral tarafından tanımlanan özel fonksiyon

Matematikte, trigonometrik integraller trigonometrik fonksiyonları içeren temel olmayan integrallerin ailesidir.