İçeriğe atla

Köşegen matris

Doğrusal cebirde köşegen matris, (↘) ilkköşegenin dışında kalan girişlerin tümü sıfır ve genellikle kare matris olan bir matrisdir. n sütun ve n satırdan oluşan D = (di,j) matrisi şöyledir:

,

Örneğin, aşağıdaki matris köşegendir:

Köşegen matris yerine bazen dikdörtgen köşegen matris de denir. Burada mxn matrisi, di,i formundaki girişlere sahiptir. Örneğin;

veya

Ayrıca bu maddenin dışında kalanlar yalnızca kare matris olarak anılır. Her kare köşegen matris de, bir simetrik matrisdir. Ayrıca girişler eğer R veya C alanında ise, normal matrisdir. Bir köşegen matrisi, üst ve alt üçgen matris olarak da tanımlayabiliriz. In birim matris ve sıfır matris de köşegendir. Bir boyutlu matrisler de daima köşegendir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matris (matematik)</span>

Matematikte matris veya dizey, dikdörtgen bir sayılar tablosu veya daha genel bir açıklamayla, toplanabilir veya çarpılabilir soyut miktarlar tablosudur. Dizeyler daha çok doğrusal denklemleri tanımlamak, doğrusal dönüşümlerde çarpanların takibi ve iki parametreye bağlı verilerin kaydedilmesi amacıyla kullanılırlar. Dizeylerin toplanabilir, çıkartılabilir, çarpılabilir, bölünebilir ve ayrıştırılabilir olmaları, doğrusal cebir ve dizey kuramının temel kavramı olmalarını sağlamıştır.

Hermisyen matris karmaşık eşleniğinin transpozesi kendisine eşit olan matrislere verilen genel addır. Transpozesinin kendisine eşit olması şartı bu matrislerin kare matris olmaları kısıtlamasını getirir. Ayrıca köşegen elemanları düşünürsek bu elemanların transpozeleri de kendi yerlerinde olduğu için eşlenik alma işlemi altında değişmez kalabilmeleri ancak gerçel sayı olmaları durumunda sağlanacağından her Hermisyen matrisin tüm köşegen elemanları tanımın getirdiği bir kısıtlamadan dolayı gerçel olmak zorundadır.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Doğrusal denklem dizgesi</span>

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

Determinant kare bir matris ile ilişkili özel bir sayıdır.

<span class="mw-page-title-main">Simetrik matris</span>

Doğrusal cebirde, transpozu kendisine eşit olan matrislere simetrik matris denir. A bir simetrik matris olsun. Bu durumda:

Vektör otoregresyon (VAR), tek değişkenli AR modellerini genelleştiren, çoklu zaman serileri arasındaki gelişimi ve karşılıklı bağımlılığı veren ekonometrik bir modeldir. Bir VAR'daki tüm değişkenler, modeldeki değişkenin kendi gecikmeleri ve diğer tüm değişkenlerin gecikmelerine bağlı olarak değişkenin gelişimini açıklayarak her bir değişken için bir denklem ile simetrik olarak ele alır. Bu özellik sebebiyle Christopher Sims, ekonomik ilişkilerin tahmininde teoriden bağımsız bir metot olarak VAR modelleri kullanımını, böylelikle yapısal modellerin "inanılmaz tanımlama kısıtlamalarına" bir alternatif olarak destekler.

Doğrusal cebirde, bir dizeyinin ilkköşegeni şeklinde gösterilen ögelerden alt iminin alt imine eşit olan ögelerin tamamının oluşturduğu kümedir.

<span class="mw-page-title-main">Boşuzay</span>

Doğrusal cebirde, bir matrisinin boşuzayı (kernel, null space) bağıntısını sağlayan tüm vektörlerinin oluşturduğu kümedir. Bir matrisinin 'boşuzay' boyutu, matrisine çarpıldığında sıfır sonucunu veren birbirinden bağımsız yöneylerine göre hesaplanır.

Matematik ve özellikle doğrusal cebirde, bir çarpık-simetrik matris, transpozu aynı zamanda olumsuzu olan bir kare matristir; yani durumunu sağlar. Eğer satırı ve sütunundaki giriş ise, çarpık-simetrik matris ilişkisine sahiptir. Örneğin, aşağıdaki matris çarpık-simetriktir:

<span class="mw-page-title-main">Kare matris</span>

Doğrusal cebirde, kare matris, satır ve sütun sayıları eşit olan bir matrisdir. n ye n lik bir matris, boyutu n olan bir kare matris olarak bilinir. Aynı boyuta sahip herhangi iki matriste, toplama ve çarpma işlemleri yapılabilir.

<span class="mw-page-title-main">Üçgen matris</span>

Doğrusal cebirde üçgen matris, bir özel kare matris tir. Kare matrisin ilkköşegeninin üstündeki girişlerin tümü sıfır ise alt üçgen matris, benzer şekilde ilkköşegenin altındaki girişlerinin tümü sıfır ise üst üçgen matris olarak adlandırılır. Üçgen matris, ya alt üçgen ya da üst üçgen olabilir. Hem üst hem de alt üçgen matris köşegen matris olarak adlandırılır. Matris denklemlerinden dolayı üçgen matrislerin çözümü kolaydır. Bu matrisler sayısal analizde çok sık kullanılır.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Doğrusal cebirde veya daha genel ifade ile matematikte matris toplamı, iki matrisin ilgili girişlerinin eklenmesi işlemidir. Matrisler için diğer bir toplama işlemi türü doğrudan toplamdır.

Jacobi metodu, sayısal lineer cebirde lineer denklemlerin diyagonal olarak baskın sistemlerin çözümlerinin belirlenmesi için oluşturulmuş bir algoritmadır. Her diyagonal eleman tek tek çözülür ve yaklaşık bir değer olarak alınır. Bu aşama onlar yakınsayana kadar tekrarlanır. Bu algoritma matris köşegenleştirilmesi Jacobi dönüşüm metodunun sadeleştirilmiş şeklidir. Bu metot daha sonra Carl Gustav Jacob Jacobi olarak isimlendirilmiştir.

Cabbibo-Kobayashi-Maskawa matrisi ya da kısaca CKM matrisi veya diğer adıyla kuark karışım matrisi, kısaca KM matrisi,parçacık fiziğinin Standart Model'inde, çeşni değiştiren zayıf bozunumların güç bilgisini içeren bir üniter matristir. Teknik olarak, kuarkların serbest halde ilerlerken ve zayıf etkileşimlerde rol alırlarkenki kuantum durumlarının uyumsuzluğunu belirtir. CP ihlalinin anlaşılmasında önemli yer tutar. Bu matris Makoto Kobayashi ve Toshihide Maskawa tarafından kuarkların üç ailesi için önerilmiş, matrise diğer bir ailenin eklenmesi fikri ise Nicola Cabibbo tarafından sunulmuştur. Bu matris ayrıca şu anki üç kuark ailesinin ikisini içeren GIM mekanizmasının bir uzantısıdır.

Matematikte, özellikle doğrusal cebirde, sıfır matris tüm elemanları sıfır olan bir matristir. Bu matris cebirdeki sıfır sayısının rolünü oynar. Bazı sıfır matris örnekleri:

<span class="mw-page-title-main">Birim matris</span> asal köşegendeki sayıları bir, diğer sayıları sıfır olan kare matris

Lineer cebirde, n boyutlu birim matris, ana köşegeni birlerden ve diğer elemanları sıfırlardan oluşan n × n boyutlu bir kare matristir. In ya da sadece I ile gösterilir. Kuantum mekaniği gibi bazı alanlarda, birim matris kalın bir rakamı 1 ile de gösterilir. Nadiren, bazı kitaplarda İngilizce ve Almanca kelimelerin baş harfleri olan U ya da E ile gösterildiği olur.

Lineer cebirde, özdeğer ayrışımı ya da eigen ayrışımı, bir matrisin özdeğerleri ve özvektörleri cinsinden ifade edilen daha basit matrislere ayrıştırılmasıdır. Sadece kare matrisler özdeğerlerine ayrıştırılabilir.

Lineer cebirde bir matris, Gauss eliminasyonunun sonucu olan şekle sahipse eşelon biçimindedir.