İçeriğe atla

Jeokronoloji

Dünya tarihindeki önemli olayların sanatsal tasviri

Jeokronoloji, kayaların kendisinde bulunan imzaları kullanarak kaya, fosil ve sediman yaşını belirleme bilimidir. Mutlak jeokronoloji radyoaktif izotoplarla gerçekleştirilebilirken, göreceli jeokronoloji paleomanyetizma ve kararlı izotop oranları gibi araçlarla sağlanır. Birden fazla jeokronolojik (ve biyostratigrafik) göstergeleri birleştirerek, geri kazanılan yaşın hassasiyeti geliştirilebilir.

Jeokronoloji, uygulamada, fosil çiçek ve hayvan topluluklarını tanımlayarak, kataloglayarak ve karşılaştırarak tortul kayaçları bilinen bir jeolojik döneme atama bilimi olan biyostratigrafiden farklıdır. Biyostratigrafi, bir kayanın mutlak yaş tayinini doğrudan sağlamaz, sadece fosil topluluğunun bir arada var olduğu bilinen bir zaman aralığına yerleştirir. Bununla birlikte, her iki disiplin de aynı katmanlama (kaya katmanları) sistemini ve katmanları alt katmanları sınıflandırmak için kullanılan süreyi paylaştıkları noktaya kadar el ele çalışır.

Jeokronoloji bilimi, tüm fosil toplulukları için mutlak yaş tarihleri elde etmeye ve Dünya'nın ve dünya dışı organların jeolojik tarihini belirlemeye çalışan kronostratigrafi disiplininde kullanılan başlıca araçtır.[1]

Radyometrik tarihleme

Bilinen bir Yarılanma ömrüne sahip bir radyoaktif izotopun radyoaktif bozunma miktarını ölçerek, jeologlar ana malzemenin mutlak yaşını belirleyebilirler.

Bu amaçla bir dizi radyoaktif izotop kullanılır ve çürüme oranına bağlı olarak farklı jeolojik dönemlere tarih vermek için kullanılır.

Daha yavaş çürüyen izotoplar daha uzun süreler için yararlıdır, ancak mutlak yıllarda daha az doğrudur.

Radyokarbon yöntemi hariç, bu tekniklerin çoğu aslında radyoaktif ana izotopun bozunma ürünü olan bir radyojenik izotopun bolluğundaki bir artışı ölçmeye dayanır.[2][3][4]

Daha sağlam sonuçlar elde etmek için iki veya daha fazla radyometrik yöntem birlikte kullanılabilir.[5]

Çoğu radyometrik yöntem sadece jeolojik zaman için uygundur, ancak radyokarbon yöntemi ve 40Ar / 39Ar yaşlandırma yöntemi gibi bazıları erken insan yaşamı zamanına[6] ve kaydedilmiş tarihe kadar uzatılabilir.[7]

Sık kullanılan tekniklerden bazıları:

  • Radyokarbon tarihleme: Bu teknik, organik malzemedeki karbon-14'ün bozulmasını ölçer ve en iyi yaklaşık 60.000 yıldan daha genç numunelere uygulanabilir.[8]
  • Uranyum-kurşun tarihleme : Bu teknik, iki kurşun izotopunun (kurşun-206 ve kurşun-207) bir mineral veya kayadaki uranyum miktarına oranını ölçer. Genellikle magmatik kayaçlardaki eser mineral zirkonlara uygulanan bu yöntem, jeolojik tarihleme için en yaygın kullanılanlardan (argon-argon tarihleme ile birlikte) biridir. Monazit jeokronolojisi, özellikle metamorfizmanın tarihlendirilmesinde kullanılan U – Pb tarihlendirmesinin başka bir örneğidir. Yaklaşık 1 milyon yıldan daha eski örneklere uranyum kurşun tarihleme uygulanır.
  • Uranyum-toryum tarihleme: Bu teknik, speleothemleri, mercanları, karbonatları ve fosil kemiklerini tarihlemek için kullanılır. Aralığı birkaç yıldan 700.000 yıla kadardır.
  • Potasyum-argon tarihleme ve argon-argon tarihleme: Bu teknikler metamorfik, magmatik ve volkanik kayaçlar ile tarihlenmektedir. Ayrıca paleoantropolojik bölgelerdeki veya üstündeki volkanik kül katmanlarını tarihlendirmek için de kullanılırlar. Argon-argon yönteminin daha genç sınırı birkaç bin yıldır.

Elektron devir rezonansı (ESR) tarihleme: Bu yöntem elektrik yüklerinin, silikatlı mineral depolarının doğal radyasyondan kaynaklanan hasarlı kristal kafesleri içerisindeki birikimini ölçer.[9]

Radyokarbon tarihleme yöntemi
Yöntemin Adı örnek türleri tarihleme sınırları
radyokarbon karbon içeren buluntular 0-50 bin
TL (Termolüminesans) ve OSL (Optik Uyarılmış Lüminesans) Seramik, pişmiş toprak kaplar, tuğla, fırın buluntusu, çökeltiler bin - 300 bin
dendkronoloji ağaç, odun kömürü 0 - 10 bin
ESR (Elektron Spin Rezonansı) Kireçtaşı, mercan, hayvan kabukları, diş bin - 300 bin
fizyon izleri Apatit, mika, zirkon, volkanik cam 30 bin - 20 milyon
obsidiyen hidrasyonu çakmak taşı, volkanik cam, glasiyer taşları, volkan külü yüz - 1 milyon
potasyum / argon (K/Ar) ısıtılmış kaya, volkanik kaya 20 bin – 4,3 milyar
arkeomanyetizma Seramik, pişmiş toprak kaplar, tuğla, fırın buluntusu 0 - 5 bin
amino asit Organik maddeler 2 bin - 2 milyon
Jeolojik zaman cetveli
Kronostratigrafide kayaç (tabakalar) segmentleri Jeokronolojide zaman dilimleri Jeokronolojik birimlere notlar
eonotem üst zaman 4 toplam, yarım milyar yıl veya daha fazla
eratem zaman 10 tanımlı, birkaç yüz milyon yıl
sistem dönem 22 tanımlı, onlarca ~ yüz milyon yıl
seri devre 34 tanımlı, on milyonlarca yıl
kat çağ 99 tanımlı, milyonlarca yıl
kronozon kron ICS zaman ölçeği tarafından kullanılmayan bir yaşın alt bölümü

Bölünme izi tarihleme

Kozmojenik nüklitler jeokronolojisi

Bir jeomorfik yüzeyin oluşturulduğu yaşı (maruz kalma tarihleme) veya daha önce yüzeysel malzemelerin gömüldüğü (gömme tarihleme) bir dizi ilgili teknik. Maruz kalma tarihleme, alüvyonlu bir fan gibi bir yüzeyin oluşturulduğu yaş için bir proxy olarak Dünya materyalleri ile etkileşen kozmik ışınlar tarafından üretilen egzotik nüklidlerin (örneğin 10Be, 26Al, 36Cl) konsantrasyonunu kullanır. Mezar tarihleme, 2 kozmojenik elementin diferansiyel radyoaktif bozunumunu, bir tortunun daha fazla kozmik ışınlara maruz kalmanın gömülmesiyle tarandığı yaş için bir vekil olarak kullanır.

Kozmojenik nüklitler (veya kozmojenik izotoplar): kozmik ışın ufalanmasının neden olduğu güneş sistemindeki bir atom çekirdeği ile birlikte yüksek enerjili bir kozmik ışın etkileştiğinde oluşan nadir izotoplardır. Bu izotoplar Dünya'nın atmosferinde kaya ve toprak gibi, Dünya dışında göktaşları gibi maddelerde üretilen materyallerdir. Kozmojenik izotopları ölçen bilim adamları, jeolojik ve astronomik süreçlerin aralığı hakkında fikir elde edebiliyor. Hem radyoaktif ve istikrarlı izotoplar vardır. Bu radyoizotopların bazıları Trityum, Karbon-14, Fosfor-32’dir.

Bazı hafif (düşük atom numarası) eski nüklitlerin (bazı lityum, berilyum ve bor izotopları) sadece büyük patlama sırasında ortaya çıkmadığı ve büyük patlama sonrasında da oluşmuş olduğu düşünülür fakat güneş sistemindeki yıldızlar arası gaz ve toz üzerindeki ufalanmış kozmik ışınlar işlemiyle yoğunlaşmadan önce oluşmuştur. Bu onların oranları ve Dünya’daki diğer bazı nüklitlerin bolluğu ile karşılaştırıldığında bu gibi kozmik ışınların bolluğunu açıklıyor. Ancak, bunların oluşumu için mekanizma tam olarak aynı olsa bile, "güneş sisteminde içindeki yerinde" kozmojenik nüklitler için rastgele tanımlanan nitelilik "kozmojenik çekirdekler" olarak adlandırılmasını güneş sisteminin oluşumundan önce ufalanmış kozmojenik ışınlar tarafından oluşturulmuş eski nüklitleri engeller. Bu aynı nüklitler Dünya üzerine, atmosfere küçük miktarlarda kozmik ışınların gelmesi Dünya'da Meteoritler oluşturulmuştur. Ancak berilyum (tümü kararlı berilyum-9) güneş sistemindeki daha önce var olan yoğunlaşma ve güneş sistemini meydana getiren çok daha büyük miktarlarda en baştan beri mevcuttur. Dolayısıyla güneş sistemini meydana getiren malzemelerin içinde mevcuttur.

Bir nüklit her iki sınıfa ait olamaz. Başka bir şekilde ayrım yapmak hangi alt küme olarak adlandırıldığının zamanlamasını belirler. Geleneksel olarak bazı kararlı izotoplar lityum, berilyum ve borun büyük patlama ve güneş sisteminin oluşumunda kozmik ışın ufalanmaları tarafından üretildiği düşünülmektedir. İlkel nüklit berilyum-9 kararlı berilyum izotoplarına örnektir.[10]

Luminol ve hemoglobin, kemilüminesans örneği
Mikrobiyolojik tanıda UV-fotolüminesans

Lüminesans tarihleme

Lüminesans tarihleme teknikleri kuvars, elmas, feldispat ve kalsit gibi malzemelerden yayılan 'ışığı' gözlemler. Jeolojide optik olarak uyarılmış lüminesans (OSL), katodolüminesans (CL) ve termolüminesans (TL) dahil olmak üzere birçok lüminesans tekniği kullanılmaktadır. Termolüminesans ve optik olarak uyarılmış lüminesans, arkeolojide, çanak çömlek veya pişirme taşları gibi 'ateşlenen' nesneleri güncellemek için kullanılır ve kum göçünü gözlemlemek için kullanılabilir.

Lüminesans, ısıdan kaynaklanmayan bir madde tarafından kendiliğinden ışık yayılmasıdır; veya "soğuk ışık".

Böylece bir soğuk cisim radyasyonu şeklidir. Kimyasal reaksiyonlar, elektrik enerjisi, atom altı hareketler veya bir kristal üzerindeki stres neden olabilir. Bu, ışıldamayı, ısıtma sonucunda bir madde tarafından yayılan akkordan ayırır. Tarihsel olarak, radyoaktivite bir "radyo-lüminesans" biçimi olarak düşünülmesine rağmen, bugün elektromanyetik radyasyondan daha fazlasını içerdiğinden ayrı olduğu düşünülmektedir.

Kadranlar, eller, teraziler, havacılık ve navigasyon enstrümanları ve işaretlerinin işaretleri genellikle "aydınlatma" olarak bilinen bir işlemle ışıldayan malzemelerle kaplanır.[11]

Artımlı tarihleme

Artımlı tarihleme teknikleri, sabitlenebilen (yani, günümüzle bağlantılı ve dolayısıyla takvim veya yıldız zamanı) veya yüzen olabilen yıllık yıllık kronolojilerin oluşturulmasına izin verir.

Dendrokronoloji

Ağaç halkaları her yıl büyür. Bir ağaçtan küçük bir sondajla örnek alınarak halkalar sayılır ve bu şekilde son derece yüksek güvenilirlikte dendrokronolojik bir zaman ölçeği oluşturulabilir ve karbon-14 tarihlemesi ile denetimleri gerçekleştirilebilir.[12]Kuvaterner çalışmalarında dendrokronoloji yöntemi birçok alana uygulanabilir. Örneğin; İklim çalışmalarında, jeomorfolojinin (dendrojeomorfoloji) kendi içindeki birçok alanda; buzul çalışmalarında (dendroglasiyoloji), volkanik faaliyetlerde (dendrovolkanoloji), depremler ve kaya glasiyelleri çalışmalarında, enkaz akışları, kaya düşmeleri ve heyelan sahalarının belirlenmesinde, çığlar, termokarst süreçleri, seviye değişiklikleri, flüvyal süreçlerin yaşlandırılması ve kumul hareketleri gibi çalışmalarda dendrokronoloji yöntemi uygulanır.[13]

Buz çekirdeği

Likenometri: Yeni yüzeylenmiş bir kaya üzerindeki likenlerin büyümesi esasına dayalı bir yöntemdir.

Varv: Başta buzul gölleri olmak üzere, birçok gölde bulunan farklı çökel katmanları yıllık olarak oluşmaktadır. Bazı göllerde varv katmanları binlerce yıl geriye gidebilmektedir. Varvlar jeolojik kayaç oluşumlarında, hatta Prekambriyen yaşlı çökellerin içinde dahi ayırt edilebilir.

Paleomanyetik tarihleme

Zaten iyi tanımlanmış bir paleomanyetik kutup dizisi (genellikle sanal jeomanyetik kutuplar olarak adlandırılır), görünür bir polar gezinme yolu (APWP) oluşturur. Böyle bir yol büyük bir kıta bloğu için inşa edilmiştir. Farklı kıtalar için APWP'ler, yaşı bilinmeyen kayalar için yeni elde edilen kutuplar için referans olarak kullanılabilir. Paleomanyetik tarihleme için, paleopole APWP'deki en yakın noktaya bağlanarak kayaların veya bilinmeyen yaştaki tortulardan elde edilen bir kutbun tarihlendirilmesi için APWP'nin kullanılması önerilmektedir. İki paleomanyetik tarihleme yöntemi önerilmiştir:

(1) açısal yöntem ve

(2) rotasyon yöntemi.[14]

İlk yöntem, aynı kıta bloğunun içindeki kayaların paleomanyetik tarihlendirilmesi için kullanılır.

İkinci yöntem, tektonik rotasyonların mümkün olduğu katlanmış alanlar için kullanılır.

Demir içeren bazı mineraller veya taneler, kritik bir seviye olan Curie sıcaklığının üzerine çıkan bir sıcaklıkla ısıtıldıklarında, yeryüzünün manyetik alanına duyarlı hale gelir. Kritik seviyelerinden daha yüksek seviyelere ısıtılan kayaların içindeki mineral ve taneler, oluşumları esnasında etkili olan manyetik alan yönelimini korurlar. Kayaçların bağımsız yollarla yaşlandırılabildiği yerlerde, paleomanyetik bir zaman ölçeği düzenlenebilir. Bu zaman ölçeği, paleomanyetik kalıntıların tek başına kullanıldığı diğer yerlerde uygulanabilir.

Manyetostratigrafi

Jeomanyetik kutupsallık ileri Senozoik'te

Manyetostratigrafi, bir dizi yataklı tortul ve / veya volkanik kayaçtaki manyetik polarite bölgelerinin paterninden yaşı, manyetik polarite zaman ölçeğine göre belirler. Polarite zaman ölçeği daha önce deniz tabanı manyetik anomalilerinin tarihlendirilmesi, manyetostratigrafik kesitlerde radyometrik olarak uzanan volkanik kayaçlar ve astronomik olarak tarihlenen manyetostratigrafik kesitlerin belirlenmesiyle belirlenmiştir. tortul ve volkanik dizilerin tarihlenebilmesi için kullanılan bir jeofizik korelasyon tekniğidir. Yöntem bölüm boyunca ölçülen aralıklarla yönelik örnekler toplayarak çalışır. Numuneler onların karakteristik mıknatıslanmarı (ChRM), bir tabakasının oluşumundan Dünya'nın manyetik alanının kutuplarını belirlemek için, analiz edilir. Bunun mümkün olmasının sebebi, Volkanik akımları thermomanent manyetizasyon kazanmaktadır ve sedimanlar oluşumu sırasında kalıcı çökelme mıknatıslanmasına uğrar ve her ikisi de Dünya'nın alanının yönünü yansıtan mıknatıslanmalardır.

Kemostratigrafi

İzotop bileşimlerindeki küresel eğilimler, özellikle karbon-13 ve stronsiyum izotopları, tabakaları ilişkilendirmek için kullanılabilir.[15]

Kemostratigrafi veya kimyasal stratigrafi, stratigrafik ilişkileri belirlemek için tortul diziler içindeki kimyasal varyasyonların incelenmesidir. Alan nispeten genç, sadece 1980'lerin başında ortak kullanıma girmiş, ancak kemostratigrafinin temel fikri neredeyse stratigrafinin kendisi kadar eskidir: Farklı kimyasal imzalar, farklı fosil meclisleri veya farklı stratografik ilişkiler kurmada kadar faydalı olabilir.[16]

İzlanda'nın güney orta kesimindeki tefra ufukları. Volkanologların ellerinin yüksekliğindeki kalın ve açık-koyu renkli tabaka Hekla'dan riyolitik-bazaltik tefranın belirleyici ufkudur.

Marker horizonların korelasyonu

Marker horizonlar, aynı yaştaki ve bu tür ayırt edici kompozisyon ve görünümdeki stratigrafik birimlerdir, farklı coğrafi bölgelerdeki varlıklarına rağmen, yaş denklikleri konusunda kesinlik vardır. Hem deniz hem de karasal fosil faunal ve floral meclisler ayırt edici marker ufuklar yaratır.[17] Tephrochronology, bilinmeyen volkanik külün (tefra) jeokimyasal olarak parmak izi tarihli tefra ile jeokimyasal korelasyonu için bir yöntemdir. Tefra aynı zamanda arkeolojide bir tarihleme aracı olarak da kullanılır, çünkü bazı patlamaların tarihleri iyi kurulmuştur. İşaret ufukları, stratigrafik korelasyonda kullanılan geniş bir coğrafi boyutta (dizinin büyüklüğünden farklı) stratigrafik birimlerdir. Bu amaç için genellikle tüf katmanları (lithified volkanik kül) kullanılır.[18]

Kronolojik periyodizasyonun jeolojik hiyerarşisi

Jeokronoloji: Büyükten küçüğe:

  1. Süper üst zaman
  2. Üst zaman
  3. Zaman
  4. Dönem
  5. Devre
  6. Çağ
  7. Kron

Kronostratigrafiden farklılıklar

Jeokronolojik ve kronostratigrafik birimleri karıştırmamak önemlidir.[19] Jeokronolojik birimler zaman periyotlarıdır, bu nedenle Geç Kretase Dönemi'nde Tyrannosaurus rex'in yaşadığını söylemek doğrudur.[20] Kronostratigrafik birimler jeolojik malzemedir, bu nedenle Tyrannosaurus cinsinin fosillerinin Üst KretaseSerisinde bulunduğunu söylemek de doğrudur.[21] Aynı şekilde, Tyrannosaurus fosillerinin bulunduğu Hell Creek yatağı gibi bir Üst Kretase Serisi yatağına gitmek ve ziyaret etmek tamamen mümkündür - ancak bir süre olduğu için Geç Kretase Dönemi'ni ziyaret etmek doğal olarak imkânsızdır.

Ayrıca bakınız

Konuyla ilgili yayınlar

  • Smart, P.L. ve Frances, P.D. (1991), Kuvaterner tarih yöntemleri - bir kullanıcı kılavuzu. Kuvaterner Araştırmaları Derneği Teknik Kılavuzu No.4, 0-907780-08-3
  • Lowe, J.J. ve Walker, M.J.C. (1997), Kuaterner Ortamların Yeniden Yapılandırılması (2. baskı). Longman Yayıncılık, 0-582-10166-2
  • Mattinson, J. M. (2013), Devrim ve evrim: 100 yıllık U-Pb jeokronolojisi. Elementler 9, ss. 53-57.
  • Jeokronoloji kaynakça Tartışma: Origins Arşivi

Dış bağlantılar

Kaynakça

  1. ^ Mallory, V. Standish. "Geochronology-Earth science". 21 Kasım 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Aralık 2020. 
  2. ^ "Dickin, A. P. 1995. Radiogenic Isotope Geology. Cambridge, Cambridge University Press. ISBN 0-521-59891-5". 
  3. ^ "Faure, G. 1986. Principles of isotope geology. Cambridge, Cambridge University Press. ISBN 0-471-86412-9". 
  4. ^ "Faure, G., and Mensing, D. 2005. "Isotopes - Principles and applications". 3rd Edition. J. Wiley & Sons. ISBN 0-471-38437-2". 
  5. ^ "Dalrymple, G. B.; Grove, M.; Lovera, O. M.; Harrison, T. M.; Hulen, J. B.; Lanphere, M. A. (1999). "Age and thermal history of the Geysers plutonic complex (felsite unit), Geysers geothermal field, California: a 40Ar/39Ar and U–Pb study". Earth and Planetary Science Letters. 173 (3): 285–298. doi:10.1016/S0012-821X(99)00223-X.". 
  6. ^ "Ludwig, K. R.; Renne, P. R. (2000). "Geochronology on the Paleoanthropological Time Scale". Evolutionary Anthropology. 9: 101–110. doi:10.1002/(sici)1520-6505(2000)9:2<101::aid-evan4>3.0.co;2-w.". 
  7. ^ "Renne, P. R., Sharp, W. D., Deino. A. L., Orsi, G., and Civetta, L. 1997. 40Ar/39Ar dating into the historical realm: Calibration against Pliny the Younger. Science, 277, 1279-1280 "Archived copy" (PDF). Archived from the original (PDF) on 2008-10-30. Retrieved 2008-10-25.". 
  8. ^ "Plastino, W.; Kaihola, L.; Bartolomei, P.; Bella, F. (2001). "Cosmic Background Reduction In The Radiocarbon Measurement By Scintillation Spectrometry At The Underground Laboratory Of Gran Sasso" (PDF). Radiocarbon. 43 (2A): 157–161. doi:10.1017/S0033822200037954. Archived from the original (PDF) on 2008-05-27". 
  9. ^ Öztürk, Muhammed Zeynel (2016). "Kuvaterner araştırmalarında kullanılan başlıca radyometrik tarihlendirme yöntemleri". Özgen, Nurettin; Karadoğan, Sabri (Ed.). Fiziki Coğrafyada Araştırma Yöntemleri ve Teknikler (1 bas.). Pegem Akademi. ss. 164-182. ISBN 9786053187493. 
  10. ^ Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey, "Bölüm 22: Baş Grup Elementleri I: Metaller", General Chemistry: Principles and Modern Applications (8 bas.), s. 41 
  11. ^ Forman, Steven L.; Pierson, James; Lepper, Kenneth (2000). "Luminescence Geochronology". Quaternary Geochronology. AGU Reference Shelf. ss. 157-176. doi:10.1029/RF004p0157. 
  12. ^ Huggett, Richard John (2019). "Yaşlandırma Yöntemleri". Doğan, Prof. Dr. Uğur (Ed.). Fundamentals of Geomorphology [Jeomorfolojinin Temelleri] (3 bas.). Ankara: Nobel Akademik Yayıncılık. ISBN 9786053201649. 
  13. ^ Avcı, Meral (2012), "Dendroronoloji", Kazancı, Nizamettin; Gürbüz, Alper (Ed.), Kuvaterter Bilimi, Ankara: Ankara Üniversitesi Yayınları 
  14. ^ Boş kaynak (yardım) 
  15. ^ "Brasier, M. D.; Sukhov, S S (1 April 1998). "The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: northern Siberia data". Canadian Journal of Earth Sciences. 35 (4): 353–373. doi:10.1139/e97-122.". 
  16. ^ Joachimski, Michael M.; Sarnthein, M.; Weissert, Helmut (2008), "Newsletters on Stratigraphy", Chemostratigraphy (PDF), 42 (3), s. 145-179, doi:10.1127/0078-0421/2008/0042-0145 
  17. ^ "Demidov, I.N. (2006). "Identification of marker horizon in bottom sediments of the Onega Periglacial Lake". Doklady Earth Sciences. 407 (1): 213–216. doi:10.1134/S1028334X06020127.". 
  18. ^ Tshibubudze, Asinne (2015), Integrated strato-tectonic, U-Pb geochronology and metallogenic studies of the Oudalan-Gorouol volcano-sedimentary Belt (OGB) and the Gorom-Gorom granitoid terrane (GGGT), Burkina Faso and Niger, West Africa (PDF), s. 221 
  19. ^ "David Weishampel: The Evolution and Extinction of the Dinosaurs, 1996, Cambridge Press, ISBN 0-521-44496-9". 8 Ağustos 2018 tarihinde |arşiv-url= kullanmak için |url= gerekiyor (yardım) arşivlendi. 
  20. ^ "Julia Jackson: Glossary of Geology, 1987, American Geological Institute, ISBN 0-922152-34-9". 
  21. ^ "Smith, J.B.; Lamanna, M.C.; Lacovara, K.J.; Dodson, Poole; Jnr, P.; Giegengack, R. (2001). "A Giant Sauropod Dinosaur from an Upper Cretaceous Mangrove Deposit in Egypt". Science. 292: 1704–1707. doi:10.1126/science.1060561.". 

İlgili Araştırma Makaleleri

Arkeolojik kazılarda ele geçen buluntuların bir kısmı, içinde karbon elementi bulunan çeşitli organik buluntulardır. Karbon içeren organik buluntularda eser olarak bulunan radyoaktif 14C (radyokarbon) izotopunun yoğunluğu ya da radyoaktivitesi ölçülerek söz konusu buluntular ve bu buluntuların ele geçtiği tabakalar ve kontekstler tarihlenebilir. Radyokarbon tarihleme yöntemi, bulunduğu 1950 yılından günümüze, yaklaşık son 50 bin yılda yeryüzünde meydana gelen arkeolojik, paleobotanik ve yerbilimsel olayların mutlak tarihlenmesi için kullanılan ana yöntem durumuna gelmiştir. Arkeolojik kazılarda ele geçen ve karbon içeren her organik buluntu radyokarbon yöntemiyle tarihlenebilir. Tarihlenmek üzere toplanan buluntulara örnek adı verilir. Tarihlenecek örnekler olarak ağaç parçaları, odun kömürü, kurumuş bitkiler, tahıl taneleri, dokuma parçaları, deri, hayvan kabukları, kemik, yemek artıkları sayılabilir.

<span class="mw-page-title-main">Stratigrafi</span> Kaya katmanlarının ve oluşumlarının incelenmesi

Stratigrafi, katmanbilim ya da tabakabilim. Yerkabuğunun kısımları olarak ele alınan tabakalı kayaların formasyonlardan, bileşimlerden, istiflenmelerden ve korelasyonlarından söz açan jeoloji koludur. Bir alan veya bölgedeki kayaların nitelik, kalınlık, istiflenme, yaş ve korelasyon yönlerinden ele alan tasvirci jeoloji bölümüdür.

<span class="mw-page-title-main">İzotop</span> Aynı elemente ait farklı atomlara verilen isim

İzotoplar, periyodik tabloda aynı atom numarasına ve konuma sahip olan ve farklı nötron sayıları nedeniyle nükleon sayıları bakımından farklılık gösteren iki veya daha fazla atom türüdür. Belirli bir elementin tüm izotopları neredeyse aynı kimyasal özelliklere sahipken, farklı atomik kütlelere ve fiziksel özelliklere sahiptirler. İzotop terimi, "aynı yer" anlamına gelen Yunan kökenli isos ve topos 'den oluşur; isimin anlamı ise, tek bir elementin farklı izotoplarının periyodik tabloda aynı pozisyonda yer alması anlamına gelir. Margaret Todd tarafından 1913 yılında Frederick Soddy'ye öneri olarak sunulmuştur.

<span class="mw-page-title-main">Nüklit</span>

Nüklit ya da nükleer tür; atom numarası (Z), kütle numarası (A) ve nükleer enerji durumuna göre nitelenen herhangi bir atom türüdür. Bu nitelemede; atom numarasını oluşturan proton sayısı ve proton sayısıyla birlikte kütle numarasını oluşturan nötron sayısı (N) değerlendirilirken, söz konusu enerji durumunun yarı ömrü de gözlem yapmayı sağlayacak kadar (genellikle 10-10 saniyeden) uzun olmalıdır.

<span class="mw-page-title-main">Dünya'nın yaşı</span> Dünyanın yaşının bilimsel olarak belirlenmesi

Jeologların edindiği kapsamlı ve geniş bilimsel kanıtlara dayanarak, Dünya'nın yaşının yaklaşık 4,54 milyar yıl (4,54×109 yıl) olduğuna karar verilmiştir. Bu sayı, bilinen en eski dünya kabuğuna ait minerallerin yaşı (Batı Avustralya'nın Jack Hills bölgesinde) küçük zirkon kristalleri ve Güneş Sistemi'nin yaşı meteor parçacıkları ve Ay'dan gelen örnekler üzerinde jeologların yaptığı radyometrik yaş tayini ölçümleri sonucunda ortaya çıkartılmıştır. Bu ölçümler göktaşı malzemesinin radyometrik yaşla tarihlendirilmesine ait kanıtlara dayanır ve bilinen en eski yeryüzü ve Ay örneklerinin radyometrik yaşlarıyla tutarlıdır.

Yarı ömür, genel olarak, azalmakta olan bir maddenin baştaki miktarın yarısına düşmesi için gereken zaman. Bu zaman T1/2 olarak gösterilir. Birimi zaman birimidir. Yarı ömür kavramı özellikle radyoizotop denilen izotopların bozunma hesaplarında kullanılır.

<span class="mw-page-title-main">Radyonüklit</span>

En basit çekirdek olan hidrojen çekirdeği hariç bütün çekirdeklerde nötron ve proton bulunur. Nötronların protonlara oranı hafif izotoplarda birebir oranındayken periyodik tablonun sonundaki ağır elementlere doğru bu oran gittikçe artmaktadır. Bu oran daha da artarak nüklitin artık kararlı olmadığı bir noktaya gelir. Daha ağır nüklitler, dışarıya verecekleri fazla enerjileri olduğundan kararsızlardır. Bunlara radyonüklit denir. Bu süreçte radyonüklid radyoaktif bozunmaya uğrar ve bu esnada gama ışını ve/veya atom altı parçacıklar yayabilir. Bu parçacıklar iyonlaştırıcı radyasyonu oluştur. Radyonüklidler doğada bulunabildikleri gibi yapay yollarla da üretilebilirler.

<span class="mw-page-title-main">Biyostratigrafi</span> fosilleri kullanarak kaya tabakalarının yaşlarını belirleyen stratigrafi

Biyostratigrafi, içerdiği fosil topluluklarını kullanarak kaya katmanlarının göreceli yaşlarını ilişkilendirmeye ve atamaya odaklanan yer katmanlarını inceleyen yerbilimi kolu nun dalıdır. Yaşlandırmanın birincil amacı, belirli bir olgunluğu olduğunu gösteren bir korelasyon olduğunu ufuk bir jeoloji bölümündeki farklı bölümünde bir ufuk olarak aynı zaman dilimini temsil eder. Bu tabakaların içindeki fosiller yararlıdır. tortuların yerel varyasyonlarına, tamamen farklı bakabilirsiniz tortul ortamda. Örneğin, bir bölüm kil ve marnlardan oluşurken diğerinde daha kireçli kireçtaşları olabilir. Bununla birlikte, kaydedilen fosil türleri benzeriyor ise, iki çökeltinin de aynı zamanda ortaya çıkması muhtemeldir. İdeal olarak, bu fosiller, temel biyostratigrafi birimlerini oluşturdukları için biyozonların tanımlanmasına yardımcı olmak ve her bölümde bulunan fosil türlerine dayalı jeolojik zaman periyotlarını tanımlamak için kullanılır.

Potasyum-argon yaş tayini veya K-Ar yaş tayini, jeokronoloji ve arkeolojide kullanılan bir radyometrik yaş tayini yöntemidir. Argon (Ar) içindeki potasyum (K) izotopunun radyoaktif bozunma ürününün ölçülmesine dayanır. Potasyum mika, kil mineralleri, tefra ve evaporit gibi birçok malzemede bulunan ortak bir elementtir. Bu malzemelerde, çürüme ürünü 40Ar sıvı (erimiş) kayadan dışarı kaçabilir ama kaya katılaştıkça birikmeye başlar. Yeniden kristalleşmeden (rekristalizasyondan) sonra geçen süre, biriken 40Ar miktarı ile arta kalan 40K miktarının oranının ölçülmesi ile hesaplanır. 40K'nin yarılanma süresi, bu yöntemin birkaç bin yıldan daha eski numunelerin mutlak yaş tayinini hesaplamak için kullanılmasına olanak tanır. Jeomanyetik kutup zaman ölçeği, büyük ölçüde K-Ar yaş tayini ile kalibre edilmiştir.

<span class="mw-page-title-main">Litostratigrafi</span>

Litostratigrafi, birimleri sedimanter, volkanik ve bunların kısmen metamorfize olmuş cinslerinin litolojilerine ve stratigrafik konumlarına göre tanımlanmış birimlerdir. Bir litostratigrafi birimi bir ya da daha fazla litoloji tipinden oluşmuş, kendi içinde bir bütünlük gösteren ve komşu birimlerden bu özelliğiyle ayrılan bir kaya birimidir. Bu birimler genellikle istiflenme kurallarına uyar ve çoğu kez tabakalıdır. Litolojik sınırların dereceli geçişli veya belirsiz olduğu durumlarda sedimanter yapılar, jeomorfolojik özellikler, mineral kapsamı, fosiller ve diğer fiziksel özellikler de bu birimlerin tanımlanmasında kullanılabilir. Fosiller bu durumda litoloji biriminin fiziksel içeriği olarak düşünülür.

<span class="mw-page-title-main">Kronostratigrafi</span> kayaç kütlelerinin göreceli yaş ilişkilerini ele alan stratigrafinin bir parçasıdır.

Kronostratigrafi, kayaç kütlelerinin göreceli yaş ilişkilerini ele alan stratigrafinin bir parçasıdır ve en temel birimi jeolojik zamanın belli bir aralığında oluşan bir kayaç kütlesidir. Kronostratigrafi'nin en büyük amacı, kayaçların yer değişiminin sırasını ve bütün kayaçların yer değişim zamanını belli jeolojik bölge ve dünyanın jeolojik geçmişinde aramaktır. Kronostratigrafi jeolojik bir alan içerisinde zamana bağlı birikme esnasındaki tüm kayaçların çökelmesini ve dünyanın son oluşum halini kayıt altına almasını sağlamaktadır. Standart stratigrafik isimlendirme bilinen fosil toplulukları tarafından tanımlanan zamana göre belli aralıklara dayandırılmış bir sistemdir. Fosil topluluklarının belli aralıklar ve belli arayüzlere göre nitelikli bir tez halinde oluşum tarihleri belirlenmektedir.

Kozmojenik nüklitler, kozmik ışın ufalanmasının neden olduğu güneş sistemindeki bir atom çekirdeği ile birlikte yüksek enerjili bir kozmik ışın etkileştiğinde oluşan nadir izotoplardır. Bu izotoplar Dünya'nın atmosferinde kaya ve toprak gibi, Dünya dışında göktaşları gibi maddelerde üretilen materyallerdir. Kozmojenik izotopları ölçen bilim adamları, jeolojik ve astronomik süreçlerin aralığı hakkında fikir elde edebiliyor. Hem radyoaktif ve istikrarlı izotoplar vardır. Bu radyoizotopların bazıları Trityum, Karbon-14, Fosfor-32’dir.

<span class="mw-page-title-main">Nükleosentez</span> Başta proton ve nötronlar olmak üzere önceden var olan nükleonlardan yeni atom çekirdekleri yaratan süreç

Nükleosentez, daha önceden var olan çekirdek parçacıklarından, esasen proton ve nötronlardan, yeni atomik çekirdeklerin yaratılması sürecidir. İlk atomik çekirdekler, Büyük Patlama'dan yaklaşık üç dakika sonra, Büyük Patlama nükleosentezi olarak bilinen sürecin sonunda oluşmuştur. Hidrojen ve helyumun ilk yıldızların bileşenlerini oluşturması ve kainatın bugünkü hidrojen/helyum oranı o zamanlara dayanır.

Tarihlendirme yöntemleri özellikle sağladığı yüksek doğruluk derecesi ve güvenilir sonuçlar veriyor olması nedeniyle başta yerbilimleri olmak üzere birçok disiplin tarafından, çok çeşitli amaçlar için kullanılmaktadır.

Argon tarihlendirme yöntemi kuvaterner ve öncesi jeolojik dönemlere ait volkanik malzemelerin yaşlandırılmasında kullanılan radyometrik yaşlandırma yöntemidir. Aynı zamanda jeolojik ve jeomorfolojik olayların tarihlendirilmesi amacıyla da kullanılır. Argon tarihlendirme yönteminde iki farklı yaklaşım vardır. Bunlardan biri Potasyum-Argon (40K-40Ar),diğeri ise Argon-Argon (40Ar-39Ar) tayinidir. Potasyum - argon olarak bilinen yaklaşım Potasyum 40 (40K) izotopunun, Argon40 (40Ar) gazına radyoaktif bozunumunu esas alan tarihlendirme yöntemidir. Argon tarihlendirme yöntemindeki ikinci yaklaşım ise Argon-Argon(40 Ar-39Ar) yöntemidir. Argon -Argon(40Ar-40Ar) yöntemi, Potasyum-Argon (40K-40Ar)'un yerini almak için icat edilen bir tarihlendirme yöntemidir. Argon-Argon yönteminin Potasyum-Argon yönteminden farkı yaşlandırma yapılırken yalnızca bir kaya parçası veya mineral gerekir ve tek bir ölçüm yeterlidir; Potasyum-Argon yönteminde ise ayrı ayrı iki ölçüm gereklidir .Bu iki yöntemin temelinde Potasyum-40 (40K)'ın radyoaktif bozunumu ile Argon-40 (40Ar)'a dönüşmesi yer alır. Argon gazının asal gaz olması,dolayısıyla başka iyonlarla bileşik yapma durumunun bulunmayışı ve kolay ölçülebilmesi bu yöntemin ortaya çıkışında önemli avantaj olmuştur.

<span class="mw-page-title-main">Radyometrik tarihleme</span>

Radyometrik tarihleme veya radyoaktif tarihleme, taş ya da karbon gibi maddelerin oluştuğunda izini sürdüren radyoaktif kirliliklerin seçici olarak katıldığı vakit ile yaşını tayin etmek için kullanılan bir yöntemdir. Bu yöntem, maddenin içindeki tabii olarak oluşan izotopların bolluğunu, bilinen sabit bir azalım hızında oluşan bozunum ürünleri bolluğu ile karşılaştırır.

Argon (18Ar) 25 bilinen izotopa, 30Ar' dan 54Ar' e ve 1 izomere (32mAr), sahiptir. Bunlardan üçü kararlıdır. Yeryüzünde 40Ar doğal argonun %99.6' sını meydana getirir. En uzun ömürlü radyoaktif iztoplar 269 yıl ile 39Ar, 32.9 yıl ile 42Ar ve 35.04 yıl ile 37Ar' dir. Diğer tüm izotopların yarı ömürleri 2 saatten azdır ve hatta çoğununki 1 dakikadan kısadır. En az kararlı olan 30Ar için bu süre 20 nanosaniyedir.

<span class="mw-page-title-main">Jeolojik kayıt</span>

Stratigrafi, paleontoloji ve diğer doğa bilimlerindeki jeolojik kayıt, kaya katmanlarının tüm katmanlarına atıfta bulunur. Diğer bir deyişle,volkanizma veya ayrışma kırıntılarından Türetilen tortunun birikmesiyle ortaya çıkan tortular. Bu, tüm fosil içeriğini ve Dünya'nın tarihi hakkında sağladığı bilgileri içerir: geçmiş iklimi, coğrafyası, jeolojisi ve yüzeyindeki yaşamın evrimi. Süperpozisyon yasasına göre tortul ve volkanik kaya katmanları üst üste çökelmiştir. Magmatik kayaçlar tarafından girilebilen ve tektonik olaylarla bozulabilen katılaşmış (yetkin) bir kaya sütunu haline gelmek için zamanla sertleşirler.

Mutlak tarihleme, arkeoloji ve jeolojide bir eserin, binanın veya kayanın tam yaşını veya yaş aralığını belirlemek için kullanılan bir yöntemdir. Malzemelerin fiziksel, kimyasal ve yaşam özelliklerine ve bilinen tarihlerle tarihsel ilişkilerine dayanan radyokarbon tarihleme, potasyum-argon tarihleme, termolüminesans tarihleme ve dendrokronoloji gibi çeşitli tekniklerin kullanımını içerir. Bu teknikler, bilim insanlarının malzemelerin yaşını sayısal olarak ölçmesine olanak tanır ve aralarındaki yaşı ölçmeden sadece olayları sıraya koyan göreceli tarihlendirmeden daha kesin tarihler sağlar. Mutlak tarihleme, geçmişteki olayların kronolojik sırasını anlamak ve arkeolojik alanların ve eserlerin yaşını belirlemek için oldukça önemlidir

Yüzeye çıkma tarihlemesi, bir kayanın yerküre yüzeyinde veya yakınında açıkta kaldığı sürenin uzunluğunu tahmin etmeye yönelik jeokronolojik tekniklerin bir derlemesidir. Yüzeye çıkma tarihlemesi, buzul ilerlemelerini ve geri çekilmelerini, erozyon geçmişini, lav akışlarını, göktaşı çarpmalarını, kaya kaymalarını, fay yüzeylerini, mağara gelişimini ve diğer jeolojik olayları tarihlendirmek için kullanılır. En çok 103 ile 106 yıl arasında açıkta kalan kayalar için kullanışlıdır.