İçeriğe atla

Jacobi özdeşliği

Jacobi özdeşliği, üç boyutlu Öklid uzayında vektörel çarpımın ve tüm Lie cebirlerinde -tanımları gereği-, o cebirin braketinin sağladığı, ismini Alman matematikçi Carl Gustav Jacob Jacobi'den alan bir özelliktir.

Tanım

üzerinde değişim özellikli bir + ikili işlemi olan bir küme olsun. Bir başka ikili işlem , üzerinde aşağıdaki koşulu sağlarsa, Jacobi özelliğini sağlamış olur:

Örnek olarak, üç boyutlu uzaydaki vektörel çarpım için:

3.

Dış kaynaklar

  • Şablon:MatematikWorld

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Grup teorisi</span> simetrileri inceleyen matematik dalı

Grup teorisi veya Grup kuramı, simetrileri inceleyen matematik dalıdır. Simetri kuramı olarak da adlandırılabilir. Bir nesnenin simetrileri ile kast edilen, nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümlerdir. Her nesnenin en az bir simetrisi vardır: hiçbir şey yapmadan olduğu gibi bırakma dönüşümü. Bahsettiğimiz dönüşümlerin tersleri de vardır ve aradığımız özellikleri sağlarlar. Son olarak da dönüşümlerin art arda yapılması, birleşimli bir işlemdir. Bu üç koşula sırasıyla birim elemana sahip olma, elemenların tersi olma ve grup işleminin birleşmeli olması denir. Bu kavramların matematikte soyutlanması, üzerinde tersinebilir ve bileşme özelliğine sahip ikili bir işlemin tanımlı olduğu kümeler ile yapılır. Daha detaylı açıklamak gerekirse, grup nesnesi bir küme G ve onun üzerinde tanımlı bir işleminden oluşur. Bu operasyonun aşağıdaki şartları sağlaması gereklidir:

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Soyut cebir</span> Matematiğin bir alanı

Soyut cebir veya soyut matematik, matematiğin bir alanı olup, cebirsel yapılar üzerinde çalışır. Cebirsel yapılar, elemanları üzerinde belirli işlemlerin uygulandığı kümelerdir ve gruplar, halkalar, alanlar, modüller, vektör uzayları, kafesler ve alan üzerindeki cebirler içerir. Soyut cebir terimi, 20. yüzyılın başlarında temel cebirden ayırmak amacıyla türetilmiştir. Soyut cebir ileri matematik için temel hale geldikçe basitçe "cebir" olarak adlandırılırken, "soyut cebir" terimi pedagoji dışında nadiren kullanılır.

<span class="mw-page-title-main">Vektör</span> büyüklüğü (veya uzunluğu) ve yönü olan geometrik nesne

Matematik, fizik ve mühendislikte, Öklid vektörü veya kısaca vektör sayısal büyüklüğü ve yönü olan geometrik bir objedir. Vektör, genellikle bir doğru parçası ile özdeşleştirilir. Bir başlangıç noktası A ile bir uç noktası B'yi birleştiren bir ok şeklinde görselleştirilir ve ile belirtilir.

<span class="mw-page-title-main">Lineer cebir</span> Uzay matematiği

Doğrusal cebir ya da lineer cebir; matematiğin, vektörler (yöney), vektör uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve matrisleri (dizey) inceleyen alanıdır. Vektör uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.

<span class="mw-page-title-main">Matris (matematik)</span>

Matematikte matris veya dizey, dikdörtgen bir sayılar tablosu veya daha genel bir açıklamayla, toplanabilir veya çarpılabilir soyut miktarlar tablosudur. Dizeyler daha çok doğrusal denklemleri tanımlamak, doğrusal dönüşümlerde çarpanların takibi ve iki parametreye bağlı verilerin kaydedilmesi amacıyla kullanılırlar. Dizeylerin toplanabilir, çıkartılabilir, çarpılabilir, bölünebilir ve ayrıştırılabilir olmaları, doğrusal cebir ve dizey kuramının temel kavramı olmalarını sağlamıştır.

<span class="mw-page-title-main">Çapraz çarpım</span> üç boyutlu uzayda iki yöney (vektör) ile yapılan bir işlem

Matematikte çapraz çarpım veya yöney çarpımı üç boyutlu uzayda iki yöney (vektör) ile yapılan bir işlemdir. Bu çarpımın sonucunda başka bir yöney elde edilir ve bu yöney çapraz çarpımda kullanılan iki yöneye de diktir. Aynı zamanda elde edilen yöney çapraz çarpımda kullanılan iki yöneyin oluşturduğu düzleme dik bir yöneydir. Bu çarpımın çapraz ismi gösterimde kullanılan "×" sembolünden gelmektedir ve her bir vektör sıralı bir şekilde diğeri ile çarpılmakta ve elde edilen yöney bu çarpan yöneylerden biri olmaktadır,yani çaprazlama yapılan modüler bir çarpım biçimidir.Yöney çarpımı ismi de işlemin sonucunda başka bir yöneyin elde edilmesinden gelmektedir. Bu işlemin matematik, fizik ve mühendislikte birçok uygulaması vardır.

<span class="mw-page-title-main">Sağ el kuralı</span>

Sağ el kuralı, 3 boyutlu vektörleri anlamak için matematik ve fizik bilimlerinde kullanılan ortak bir yöntemdir. 19. yüzyılın sonlarında İngiliz fizikçi John Ambrose Fleming tarafından elektromanyetizma etkileşimlerinde kullanılmak için ortaya atılmıştır.

<span class="mw-page-title-main">İşlem</span> işlenenlerden bir sonuç üreten matematiksel prosedür; sıfır veya daha fazla giriş değerinden (işlenenler olarak adlandırılır) bir çıkış değerine kadar hesaplama

İşlem, bir işi sonuçlandırmak için gerçekleştirilen çalışmalar bütünü; muamele. Örnek: "Gerekli işlem gerçekleştirildikten sonra paranızı çekebilirsiniz".

Vektör uzayı veya Yöney uzayı, matematikte ölçeklenebilir ve eklenebilir bir nesnelerin (vektörlerin) uzayına verilen isimdir. Daha resmî bir tanımla, bir vektör uzayı, iki elemanı arasında vektör toplamasının ve skaler denilen sayılarla çarpımın tanımlı olduğu ve bunların bazı aksiyomları sağladığı kümedir. Skalerler, rasyonal veya reel sayılar kümesinden gelebilir, ama herhangi bir cisim üzerinden bir vektör uzayı oluşturmak mümkündür. Vektör uzayları, skalerlerin geldiği cisime göre reel vektör uzayı, kompleks vektör uzayı veya genel bir cisim üzerinden K vektör uzayı şeklinde adlandırılır.

Matematikte değişme özelliği, terimlerin sırasının değişmesiyle sonucun değişmediği ikili işlemlere özgü bir özelliktir. Birçok ikili işlemin temel bir özelliği olmasının yanı sıra, birçok matematiksel ispat da buna dayanır. En sık olarak, "3 + 4 = 4 + 3" ya da "2 × 5 = 5 × 2" gibi ifadelerin açıklanmasında rastlanılsa da, daha ileri düzey durumlarda da kullanılabilir.

Matematiğin bir alt dalı olan fonksiyonel analizde, doğuran çekirdekli Hilbert uzayı noktasal değerlemenin bir sürekli doğrusal fonksiyonel olduğu bir fonksiyonlar Hilbert uzayıdır. Burada, fonksiyonlar Hilbert uzayından kasıt, bahsi geçen uzayın öğelerinin fonksiyonlar olduğudur. Yani söz konusu uzay bir fonksiyon uzayıdır; bununla birlikte aynı zamanda Hilbert uzayı özelliği de taşımaktadır. Benzer bir şekilde, bu tür uzaylar doğuran çekirdekler tarafından da tanımlanabilirler. Bu terimi ilk defa ve aynı zamanda Nachman Aronszajn (1907–1980) ve Stefan Bergman (1895–1977) adlı matematikçiler 1950'de ortaya atıp geliştirmişlerdir.

<span class="mw-page-title-main">Hilbert uzayı</span>

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

<span class="mw-page-title-main">Temel cebir</span>

Basit cebir, matematik dersinde öğretilen cebirin en temel kısmıdır. Normalde liselerde öğretilir ve öğrencilerin işlem ve belirli sayılar üzerine kurulu olan aritmetiği anlamalarını sağlar. Cebir, değişken olarak bilinen sabit olmayan değerlerin büyüklüklerini açıklar. Soyut cebir aksine temel cebir, cebirsel yapı ile ilgilenmez, reel sayı ve karmaşık sayılarla ilgilenir.

Matematik'te bir Lie eşcebri ikili yapıda bir Lie cebridir.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

<span class="mw-page-title-main">Birleşme özelliği (ikili işlemler)</span>

Matematikte birleşmeli özellik, bir küme üzerine tanımlanmış ikili işlemlerin ayırt edici özelliklerinden biridir. Bu özelliği sağlayan ikili işlemlere birleşmeli işlem denir. Açık olarak bu özellik, (xy)z = x(yz) demektedir, yani üç elemanı "çarparken" işlem sırasının önemli olmadığını söylemektedir, bir başka deyişle birleşmeli özellikte işlem yaparken paranteze gerek olmadığını söylemektedir. Örneğin tam sayılar kümesi Z üzerine tanımlanmış olan toplama işlemi birleşmeli bir işlemdir ancak çıkarma işlemi birleşmeli değildir, çünkü eşitliği her için sağlanmasına karşın, eşitliği için sağlanmaz.

Vektör kalkülüsün'de, matematiğin bir dalıdır, üçlü çarpım genellikle öklit vektörü olarak adlandırılan üç boyutlu vektörlerin çarpımıdır. Üçlü çarpım tabiri iki farklı çarpım için kullanılır, bunlardan ilki skaler değerler için kullanılan skaler üçlü çarpımı, bir diğeri ise vektörel değerliler için kullanılan vektörel üçlü çarpımdır.

<span class="mw-page-title-main">Vida teorisi</span>

Vida teorisi vektör çiftlerini ilgilendiren cebir ve hesaplama teorisidir. Genellikle katı cisimlerin kinematik ve dinamik hesaplamalarında kullanılan doğrusal ve açısal hız, kuvvet ve tork vektör çiftlerini inceler. Matematiksel kuramı Robert Stawell Ball tarafından 1876 yılında geliştirilmiştir.

<span class="mw-page-title-main">Taban (lineer cebir)</span> Bir vektör uzayını tanımlamak için yeterli vektör kümesi

Lineer cebirde, taban, bir vektör uzayını tanımlamak için yeterli vektör kümesidir. Bir V vektör uzayının alt kümesi B bu uzayın tabanıysa, V'nin tüm elemanları B'nin elemanlarının biricik sonlu doğrusal birleşimleri şeklinde yazılabilir. Bu doğrusal birleşimlerin katsayıları, vektörün B üzerindeki bileşenleri ya da koordinatları olarak adlandırılır. Taban B'nin elemanlarına taban vektörleri denir.