İçeriğe atla

Jackson q-Bessel fonksiyonu

Matematikte,Jackson q-Bessel fonksiyonu (ya da temel Bessel fonksiyonu) üçü de Bessel fonksiyonu'nun q-analogu'dur Jackson (1903, 1903b, 1905, 1905b) tarafından tanıtıldı. Hahn-Exton q-Bessel fonksiyonu ile aynıdır.

Tanımlar

Üç Jackson q-Bessel fonksiyonları Pochhammer sembolü ve temel hipergeometrik fonksiyonu φ'ye göre tanımlanmaktadır

Ayrıca bakınız

Kaynakça

  • Ismail, Mourad E. H. (1982), "The zeros of basic Bessel functions, the functions Jν +ax(x), and associated orthogonal polynomials", Journal of Mathematical Analysis and Applications, 86 (1), ss. 1-19, doi:10.1016/0022-247X(82)90248-7, ISSN 0022-247X, MR 0649849 
  • Jackson, F. H. (1903), "On generalized functions of Legendre and Bessel", Trans. Roy. Soc. Edinburgh, cilt 41, ss. 1-28 
  • Jackson, F. H. (1903), "Theorems relating to a generalization of the Bessel functions", Trans. Roy. Soc. Edinburgh, cilt 41, ss. 105-118 
  • Jackson, F. H. (1904), "Theorems relating to a generalization of Bessel's function.", Edinb. Roy. Soc. Trans., cilt 41, ss. 399-408, JFM 36.0513.02 
  • Jackson, F. H. (1905), "The Application of Basic Numbers to Bessel's and Legendre's Functions", Proc. London Math. Soc., 2 (1), ss. 192-220, doi:10.1112/plms/s2-2.1.192 
  • Jackson, F. H. (1905), "The Application of Basic Numbers to Bessel's and Legendre's Functions (Second paper)", Proc. London Math. Soc., 3 (1), ss. 1-23, doi:10.1112/plms/s2-3.1.1 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Yılmaz kütleçekim kuramı, Türk teorik fizikçi Hüseyin Yılmaz (1924-2013) tarafından ortaya atılan ve daha sonra birkaç kişinin de birlikte katkı verdiği, düşük çekimli alanlarda Einstein'ın genel görelilik kuramı ile örtüşen ancak olay ufkuna izin vermeyen dolayısıyla da karadelik içermeyen klasik alanlı bir çekim kuramıdır.

Görüntü yük yöntemi, elektrostatikte kullanılan bir soru çözüm tekniğidir. İsimlendirmenin kökeni problemdeki sınır koşullarını bazı sanal yükler ile değiştirme yönteminden gelir.

Matematikte bir Taylor serisi olan özel fonksiyon Legendre chi fonksiyonu aynı zamanda bir Dirichlet serisidir.

Matematikte, a Neumann polinomali,Carl Neumann tarafından özel durum için sunulan, Bessel fonksiyonu terimleri içerisinde fonksiyonların 1/z açılımında kullanılan bir polinomdur.

Lommel diferansiyel denklemi Bessel diferansiyel denklemi'nin homojen olmayan formudur:

Lommel polinomu Rm(z), Eugen von Lommel (1871) tarafından tanıtıldı,içinde 1/zolan polinom yinelemeli ilişki veriyor.

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

<span class="mw-page-title-main">Sicim kozmolojisi</span>

Sicim kozmolojisi, ilk kozmolojinin sorularını sicim kuramındaki eşitlikleri uygulayarak çözmeye çalışan yeni bir alandır.Çalışmaların bağlantılı bölgesi brane kozmolojisidir. Bu yaklaşım sicim kuramının şişme kozmolojik modelinden türetilebilir, bu sayede ilk büyük patlama senaryolarına kapı açılmıştır. Fikir, eğimli bir arka planda bozonik sicim özelliği ile bağlantılıdır, düzgün olmayan sigma modeli olarak bilinir. Bu modelin ilk işlemleri beta işlevi olarak gösterilir, modelin sürekli ölçünü bir enerji düzeyinin işlevi olarak nitelendirir, Ricci tensörü ile orantılı olmakla birlikte Ricci akışına da mahal vermiştir. Bu model konformal değişmeze sahip olduğundan mantıklı bir kuantum alan kuramı olarak tutulmalı, beta işlevi ise ardından, hemen sıfır üreten Einstein alan eşitliği olmalıdır. Einstein’ın eşitlikleri bir şekilde yersiz görünse de, bu sonuç kesinlikle iki-boyutlu modelin daha fazla boyutlu fizik üretebileceğini göstermesi açısından dikkat çekicidir. Buradaki ilgi çekici nokta ise sicim kuramı gereksinim olmasa da düz bir arka plandaki tutarlıkla 26 boyut olarak formulize edilebilir. Bu Einstein’ın eşitliklerinin altında yatan fiziğin konformal alan kuramı ile açıklanabileceğine dair ciddi bir ipucudur. Aslında, bu sicim kozmolojisi için şişmeci bir evrene sahip olduğumuza dair bir kanıtımız olduğuna işarettir.Evrenin evriminde, şişme evresinden sonra, bugün gözlemlenen genişleme Firedmann eşitliklerinde tam anlamıyla tanımlanmıştır. İki farklı evre arasında pürüzsüz bir geçiş beklenir. Sicim kozmolojisi, geçişi açıklamakta zorluk çeker. Bu sözlükte zarif çıkış problemi olarak bilinir. Şişmeci kozmoloji skaler alanın varlığının şişmeyi zorladığını ima eder. Sicim kozmolojisinde bu durum dilaton alanına mahal verir.. Bu skaler ifade, düşük enerjilerin efektif kuramı olan skaler alanın bozonik sicimin tanımına girer. Bu eşitlikler Brans-Dicke kuramındakilere benzer. Nicel çözümlenimler boyutların kritik sayısını, (26), dörde düşürmeye çalışır. Genel olarak, Friedmann eşitliklerinden rastgele sayıda boyut elde edilebilir. Başka bir durum ise boyutların kesin sayısı etkili dört boyut kuramı ile çalışarak sıkıştırılmış evrenleri üretir. Sıkıştırılmış boyutlarda skaler alanların oluştuğu Kaluza-Klein kuramı buna bir örnektir. Bu alanlara modili denir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Fizikte,düzlem dalga açılımı küresel dalgaların bir toplamı olarak bir düzlem dalgayı ifade eder,

İstatistik fizikde,BBGKY hiyerarşisi (Bogoliubov–Born–Green–Kirkwood–Yvon hiyerarşisi, bazen Bogoliubov hiyerarşisi olarak alınır) çok sayıda etkileşen parçacıkdan oluşan bir sistemin dinamiklerini tanımlayan bir dizi denklemdir. BBGKY hiyerarşisinde S- parçacığı için denklem dağıtım fonksiyonu (olasılık yoğunluk fonksiyonu) (s + 1)-parçacık dağılım işlevi eşitlikli bir denklem zincirini içerir. Bu kuramsal sonuç, Bogoliubov, Born, Green, Kirkwood ve Yvon'un ardından isimlendirilmiştir.

Matematikte Hankel dönüşümü, diğer adıyla Fourier–Bessel dönüşümü, herhangi bir f(r) fonksiyonunu sonsuz sayıda birinci tip Bessel fonksiyonlarının Jν(kr) oranlı toplamı olarak gösterir. Bu dönüşümde ortogonal temeli oluşturan Bessel fonksiyonlarının hepsi aynı ν mertebesindedir. Bu integral dönüşümü ilk kez matematikçi Hermann Hankel tarafından tasvir edilmiştir. Formülü ve ters dönüşümü sırasıyla şu şekilde verilebilir: