İçeriğe atla

Isıl kütle

Termal kütlenin yararı, ağır ve hafif yapıların iç sıcaklığı nasıl etkilediğinin bu karşılaştırmasında gösterilmiştir.

Isıl kütle, Albert Einstein'ın kütle enerji denkliğinden bulunulan sıcaklık akımında termal enerji denkliği olarak tanımlanır. Isıl kütle teorisi, Zeng-Yuan Guo tarafından ileri sürülmüş kütle enerji çiftliğine ait sıcaklıkla ilgili konvensiyonel süreçte enerji gibi veya transfer sürecinde kütle özellikleri gösterir. Kütle sıcaklık, sıcaklık transferinde duruma ve kütle sıcaklığına neden olur. Kütle sıcaklığın oldukça küçük olduğu için çok nadir ölçülür ancak çok hızlı sıcaklık veya çok aşırı sıcaklık transferinde kendi değerini gösterebilir. Geleneksel olan Kalori teorisinden ayrılan kütle olmadan madde ısı olarak hareket eder. Isıl kütle teorisi kütle ile akışkan madde olarak hareket eder.

Isıl kütle teorisi bazlı, ısıl kütle gaz modeli geliştirilmiştir. Bu modelde, sıcaklık transferi süreci ısıl kütle gaz akışı olarak orta boyutta hareket eder. Isıl kütle basıncı eğilimi, potansiyel alan ile yürütülür. Isıl kütle gazı ısıların birleşimi olan gaz gibidir, termal enerji taşınması birim yalancı parçacıkları olarak tanımlanır. Katı maddeler için ısıl kütle gazı kristaller için fonon gaz olacaktır. Saf metaller için elektron üzerinde bağlanır veya yalnızca diğer katılar arasında olur. Orta kararda ısı transferi düşünüldüğünde, biz ısıl kütle gazı makroskobik, iri ölçekli, akışkan özelliklerinden ziyade her bir ısının detaylarına odaklanırız ve böylece ısıl gaz süreci ve klasik olarak Newton mekaniği tarafından tanımlanabilen aktarım sürecini öngörürüz.

Isıl kütle gaz akımı için durum dengesi ve dengelerin yürütülmesi, klasik mekanik yöntembilim bazlı, akışkan ısı ve sıcaklık alanı arasındaki ilişkinin tanımlanmasını sağlayan genel ısı iletim hukukudur. Tüm termal durum etkileri önemsenmediği takdirde, genel hukuk Fourier'in Hukuk'unu çiğner ve böylece ısı iletimi konusunda Fourier'in Kanununu anlamak için bize yeni bir bakış açısı sunar. Fourier Kanunu gerekli olarak itici güç ile rezistans güç arasında ısıl kütle akışkan mekaniklerinde denge anlamındadır. Sonuç olarak, Fourier kanunu, iç etki dikkate alınmadığında veya doğrusal rezistans ilişkisi geçerli olmadığında ihlal edilmiş olur.

Termal dalga olayında ısıl kütle teorisi kullanılarak çalışılmıştır. Genel hukuk, Cattaneo-Vernotte[1] modeli ile aynı şekilde belli bir zaman içinde farklı fizik değerinin önemi, termal durum bölümlerinin etkileri yalnızca göz önüne alındığında geçersiz olur. Isıl kütle gaz modelinde belirli zaman, Cattaneo-Vernotte modeli, termal denk olmayan durumdan denk olan duruma geçtiği gevşeme zamanında olduğunda ısı akışı ile ilgili olan sıcaklık ısı yalıtımı anlamına gelir. Bu oluşan fark, termal dalga yayılımı için çok farklı tahminlere yol açar. Yalıtkan maddeler için, karakteristik değer zamanı iki sıra büyüklük ile farklılık gösterir. Bu CV modelinden ısıl kütle ile, gaz modeli ile daha yavaş sıcak tepkime noktaları ile sonuçlanır. Hatta metaldeki ısı dalgaları için, iki karakteristik zamanlamaların olduğu yerlerde çok yakın temas olurken, termal iç etkiler ayrıca sıcak dalga yayılımının farklı özelliklerine sebep olur. Özellikle sıfır altı fiziksel olmayan sıcaklık dağılımında Catteneo-Vernotte modeli ile, iki düşük sıcaklık soğutucu dalgaları ile karşılaştığında, bizim genel yasamız ile tahminler olmayacaktır.

Isıl kütle teorisi çok küçük malzemelerinin uygun olmayan termal iletiminde öngörülerde bulunmak için kullanılır. Genel hukuk, kararlı durum Fourier ısı iletimi olmayan iletimi, zamana bağlı dönemler önemsenmediğinde tanımlar. Öngörüler çok küçük malzemelerinin etkin termal iletkenliğini göstermektedir. Bu durum, kendinden olandan daha küçük olmaya verilen uzunluk için ortalama sıcaklık artışı ile uçlar arasında olan sıcaklık farkında azalan uzunluk ile azalmasına yol açar. Sonuçlar oluşan teorik veya deneysel veri ile örtüşmektedir.

Son zamanlarda, ısıl kütle teorisi geniş ve dönüştürülemeyen termodinamiklere ve fonon hidrodinamik teorisi ile karşılaştırılmaktadır. Durağan kurulum olarak, iletme dönemi doğrusal olmayan bölüm fonon dağılım fonksiyonundan, ısıl kütle teorisi bazlı iletim devresi ısı iletim dengelemesi esasında doğrusal olmayan bölüm fonon dağılım fonksiyonundan gelmektedir. Böylelikle saptırma doğrusal olmayan GK modelinin içeriğine sahip Boltzman dengeleme fonun çözeltisi olarak düşünülebilir. Hiçbir dengesi olmayan termodinamikler için, ısıl kütle teorisi dağıntı ve dağıntı üretimi modifikasyonu sağlar, ısı hava yayılımında olumsuz dağıntı üretimi ikileminden kaçınır. Sonuç olarak, dağılım üretimi Onsanger İkili İlişkisinin kurulmasıyla oluşmuştur. Bundan dolayı, ikili ilişkinin onaylanması da ısıl kütle teorisinden ortaya çıkmıştır. Güçler ve akışkanlığın genellenmesi konsepti ikili ilişkideki, akışkanlığın belirli durum değişkenleri olarak açıklanması veya açıklanmaması ikilemini ortadan kaldırmaktadır.

Arka plan

Termal enerjiyi termal kütleye bağlayan denklem:

burada Q taşınan ısı enerjisini, Cth termal kütleyi, Δ T sıcaklık değişimini ifade eder.

Uniform yapılar için, için şu yaklaşım kullanılabilir.

Burada kütleyi ve malzemenin izobarik özgül ısı kapasitesidir .

Kaynakça

  1. ^ "Cattaneo-Vernotte". 22 Haziran 2022. 22 Haziran 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Mart 2020. 

Thermomass Theory - Wikipedia, the free encyclopedia 30 Haziran 2013 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Enerji</span> bir sistemin iş yapabilme yeteneğinin ölçüsü

Fizikte enerji, bir cisime veya fiziksel bir sisteme aktarılan, işin performansında ve ısı ve ışık biçiminde tanınabilen niceliksel özelliktir. Enerji korunan bir miktardır; Enerjinin korunumu yasası, enerjinin istenen biçime dönüştürülebileceğini ancak yaratılamayacağını veya yok edilemeyeceğini belirtir. Uluslararası Birimler Sisteminde (SI) enerjinin ölçü birimi joule'dür (J).

<span class="mw-page-title-main">Termodinamik</span> enerji bilimi

Termodinamik; ısı, iş, sıcaklık ve enerji arasındaki ilişki ile ilgilenen bilim dalıdır. Basit bir ifadeyle termodinamik, enerjinin bir yerden başka bir yere ve bir biçimden başka bir biçime transferi ile ilgilenir. Bu süreçteki anahtar kavram, ısının, belirli bir mekanik işe denk gelen bir enerji biçimi olmasıdır.

<span class="mw-page-title-main">Isı transferi</span> Isıl enerjinin fiziksel sistemlerde taşınımı

Isı aktarımı, sıcaklıkları farklı iki veya daha fazla nesne arasında iletim, taşınım ya da ışınım yoluyla gerçekleşen enerji aktarımının incelenmesidir. Bu transferin matematiksel olarak modellenmesi ısı aktarımı dersinin temel konusunu oluşturur. Termodinamik, akışkanlar mekaniği ve malzeme ile ilişkilidir.

Süperiletkenlik, süperiletken adı verilen maddelerin karakteristik bir kritik sıcaklığın (Tc) altında derecelere soğutulmasıyla ortaya çıkan, maddenin elektriksel direncinin sıfır olması ve manyetik değişim alanlarının ortadan kalkması şeklinde görülen bir fenomendir. 8 Nisan 1911 tarihinde Hollandalı fizikçi Heike Kamerlingh Onnes tarafından keşfedilmiştir. Ferromanyetizma ve atomik spektrumlar gibi, süperiletkenlik kuantum mekaniğine girer. Karakteristik özelliklerini Meissner efektinden alır; süperiletken, süperiletkenlik durumuna geçerken bütün manyetik alan çizgilerini içeriden dışarıya atar. Meissner efektinin görülmesi de süperiletkenliğin klasik fizik tarafından mükemmel iletkenlik olarak tasvir edilmesini olanaksız hale getirir.

Konveksiyon, katı yüzey ile akışkan arasında gerçekleşen ısı transferinin bir çeşididir. Akışkan içindeki akımlar vasıtası ile ısı transfer edilir. Akışkan, içindeki veya akışkanla sınır yüzey arasındaki sıcaklık farklarından ve bu farkın yoğunluk üzerinde oluşturduğu etkiden doğabilmektedir. Yoğunluk değişimlerinin diğer kaynakları, değişken tuzluluk oranı veya dış kaynaklı zorlayıcı kuvvet uygulaması gibi sebepler de olabilir.

<span class="mw-page-title-main">Isı iletimi</span>

Isı iletimi ya da kondüksiyon, madde veya cismin bir tarafından diğer tarafına ısının iletilmesi ile oluşan ısı transferinin bir çeşididir.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

Isı iletkenlik ya da termal iletkenlik, fizikte malzemenin ısı iletim kabiliyetini anlatan bir özelliktir. k harfi ile ifade edilir.

<span class="mw-page-title-main">Termodinamik denge</span>

Termodinamikte bir termodinamik sistem, ısıl denge, mekanik denge, radyasyon dengesi ve kimyasal dengede olduğunda, sistem termodinamik dengededir ve cisimler arası net ısı aktarımının sıfırdır. Termodinamik dengede bulundukları ortak bir cisim bulunan iki cisim birbirleriyle de dengededir şeklinde genişletilip termodinamiğin sıfırıncı kanunu oluşturulmuştur. Homojen bir cisim tek başına söz konusu olduğunda cismin sıcaklık gradyanın her noktasında sıfır olması demektir.

<span class="mw-page-title-main">Titreşim</span>

Titreşim bir denge noktası etrafındaki mekanik salınımdır. Bu salınımlar bir sarkaçın hareketi gibi periyodik olabileceği gibi çakıllı bir yolda tekerleğin hareketi gibi rastgele de olabilir.

Kinetik teori veya gazların kinetik teorisi, gazların basınç, sıcaklık, hacim gibi makroskobik özelliklerini moleküler bileşim ve hareketlerine bağlı olarak açıklayan teoridir. Esas olarak, teori Isaac Newton'un kanısının tersine basıncın moleküller arası statik itmeden kaynaklanmadığını, bunun yerine belli hızlarda hareket eden moleküller arası çarpışmalardan kaynaklandığını söyler. Kinetik teori aynı zamanda kinetik-moleküler teori veya çarpışma teorisi olarak da bilinir.

Prandtl sayısı boyutsuz bir sayıdır. Momentum yayınımının termal yayınıma oranıdır. Sayı, Alman fizikçi Ludwig Prandtl'a ithafen adlandırılmıştır.

Termal enerji, ortam veya sistem sıcaklığı sonucunda ortamdaki veya sistemdeki bir cismin veya maddenin potansiyel ve kinetik enerjileri toplamını ifade eden bir enerji biçimidir. Sistemde sıcaklık olmadığı müddetçe bu niceliği tanımlamak zor ve hatta anlamsız olabilir. Bu durumda herhangi bir termal iş söz konusu değildir.

Isıl ışınım maddedeki yüklü parçacıkların ısıl hareketiyle meydana gelmiş elektromanyetik ışınımdır. Isısı mutlak sıfırdan büyük olan her madde ısıl ışınım yayar. Isısı mutlak sıfırdan büyük olan maddelerde atomlar arası çarpışmalar, atomların ya da moleküllerin kinetik enerjisinde değişime neden olur.

<span class="mw-page-title-main">Elektriksel özdirenç ve iletkenlik</span> Wikimedia anlam ayrımı sayfası

Elektriksel öz direnç, belirli bir malzemenin elektrik akımının akışına karşı nicelleştiren bir özelliktir. Düşük bir direnç kolaylıkla elektrik akımının akışını sağlayan bir malzeme anlamına gelir. Karşıt değeri, elektrik akımının geçiş kolaylığını ölçen elektriksel iletkenliktir. Elektriksel direnç, mekanik sürtünme ile kavramsal paralelliklere sahiptir. Elektriksel direncin SI birimi ohm, elektriksel iletkenliğin birimi ise siemens (birim) (S)'dir.

<span class="mw-page-title-main">Debye modeli</span>

Termodinamik ve katı hal fiziğinde Debye modeli; Peter Debye tarafından 1912 yılında geliştirilen, katılarda özgül ısıya (ısı kapasitesi) olan fonon katkısını tahmin etmek için kullanılan metottur. Atomik kristal yapının salınımlarını, bir kutu içerisindeki fononlar gibi düşünerek ele alır. Bu; katıya ayrı ayrı kuantum harmonik osilatörlerden oluşmuş olarak davranan Einstein modelinin tam tersidir. Debye modeli;  – Debye T3 yasası - ısı kapasitesini düşük sıcaklıklarda doğru bir şekilde tahmin eder., düşük sıcaklıklarda olan. Tıpkı Einstein modeli gibi, yüksek sıcaklıklarda Dulong–Petit Yasasını da doğru bir şekilde kapsar. Ama, ara sıcaklıklarda basitleştirmek için yapılan varsayımlar nedeniyle doğruluğu kusurludur.

<span class="mw-page-title-main">Taşınım olayı</span>

Taşınım olayı (veya taşınım fenomeni), mühendislik, fizik ve kimyada gözlemlenen ve üzerine araştırma gerçekleştirilen sistemlerin, kütle, enerji, yük, momentum ve açısal momentum değişimiyle ilgilenen çalışmalardır. Sürekli ortamlar mekaniği ve termodinamik gibi pek çok farklı alandan yararlanırken, ele aldığı konular üzerindeki ortaklıklara önemli düzeyde vurgu yapmaktadır.

<span class="mw-page-title-main">Pasif soğutma</span>

Pasif soğutma doğrudan aktif bir bileşen içermeden sadece ısı transfer metodu ile sıcak yüzeyden ısıyı sistemin dışına iletmek ile görevli bileşenlerdir. Özellikle yarı silikon olarak bilinen transistörlerden oluşan işlemci ve entegrelerin yapıları gereği ısınmaları kaçınılmazdır. Bu ısınma sonucu çıkan ısı sistemin verimini düşüren ısının sistemden atılması gerekmektedir.

Akışkanlar mekaniğinde, Rayleigh sayısı (Ra, Lord Rayleigh'e ithafen) bir akışkan için kaldırma kuvveti ilişkili bir boyutsuz sayıdır. Bu sayı, akışkanın akış rejimini karakterize eder: belirli bir alt aralıkta bir değer laminer akışı belirtirken, daha yüksek bir aralıktaki değer türbülanslı akışı belirtir. Belirli bir kritik değerin altında, akışkan hareketi olmaz ve ısı transferi konveksiyon yerine ısı iletimi ile gerçekleşir. Çoğu mühendislik uygulaması için Rayleigh sayısı büyük olup, yaklaşık 106 ile 108 arasında bir değerdedir.

Stanton sayısı (St), bir akışkana aktarılan ısının akışkanın ısı kapasitesine oranını ölçen bir boyutsuz sayıdır. Stanton sayısı, Thomas Stanton (mühendis)'in (1865–1931) adına ithafen verilmiştir. Bu sayı, zorlanmış konveksiyon akışlarındaki ısı transferini karakterize etmek için kullanılır.