İçeriğe atla

Isı radyasyonu

Isıl ışınım maddedeki yüklü parçacıkların ısıl hareketiyle meydana gelmiş elektromanyetik ışınımdır. Isısı mutlak sıfırdan büyük olan her madde ısıl ışınım yayar. Isısı mutlak sıfırdan büyük olan maddelerde atomlar arası çarpışmalar, atomların ya da moleküllerin kinetik enerjisinde değişime neden olur.

Isıl ışınım örneği parlak bir ampul tarafından yayılan kızılötesi ışıkları ve gözle görülür ışıkları içerir. Hatta hayvanlar tarafından yayılan kızılötesi ışınları ve kameralar tarafından tespit edilebilen kızılötesi ışınları ve kozmik mikrodalga arka plan ışıması da buna dahildir. Isıl ışınım, ısı kodüksiyonu ve ısı konveksiyonundan farklıdır. Dışarıda yakılan bir ateşin yanında duran bir insan hava çok soğuk olmasına rağmen gelen yüksek sıcaklığı hisseder.

Güneş ışığı, güneşin sıcak plazmasından meydana gelen ısıl ışınımdır. Dünya da ısıl ışınım yayar fakat daha düşük yoğunluktan ve farklı elektromanyetik tayf yüzünden daha soğuktur. Dünyanın güneş ışınımını emmesi, iklim ve dünya sıcaklığı gibi iki önemli konuyu belirler. Eğer ışınım yayan cisim termodinamikteki kara cisim ışımasının fiziksel karakterini karşılarsa, bu ışınıma kara cisim ışıması denir.[1] Planck Kanunu, cismin sıcaklığına bağlı olan kara cisim ışımasını tayfını tarif eder. Wien’in yer değiştirme kanunu daha çok yayılan ışınımın frekansını belirler ve Stefan-Boltzmann Kanunu ise ışın yoğunluğunu verir.[2]

Isıl ışınım, ısı transferinin temel mekanizmasıdır.

Genel Bakış

Isıl ışınım, sıcaklığı mutlak sıfırdan büyük olan maddelerin elektromanyetik dalga yaymasıdır.[3] Isıl enerjiyi, elektromanyetik enerjiye çevirmeyi temsil eder. Isıl enerji, maddedeki moleküllerin ve atomların rastgele hareketindeki kinetik enerjisinden meydana gelir. Mutlak sıfırdan büyük olan tüm maddeler birbiriyle etkileşim içinde olan ve kinetik enerjisi olan parçacıklardan oluşur. Proton ve elektron gibi yüklenmiş parçacıklardan oluşan atomlar ve moleküller ve kinetik etkileşimi olan maddedeki parçacıklar, yük ivmelenmesi ve çiftkutup salınımı olarak sonuçlanır. Bu durum, elektrik ve manyetik alan çiftinin elektrodinamik üretim ve cismin yüzey sınırından yayılan ışınımın ve fotonun yayılması olarak sonuçlanır. Elektromanyetik ışınım, ışığı içinde barındırır yani maddenin sonsuz uzay boşluğunda hareket etmesi ve çoğalmasına ihtiyacı yoktur.

Isıl ışınımın karakteristik özelliği, Kirchhoff kanununda açıklandığı gibi, soğuruculuk tayfa bağlıdır.[3] Işınım, tek renkli değildir, yani tek bir frekanstan oluşmaz sürekli foton dağılımından meydana gelir. Eğer ışınım yapan cisime onun yüzeyi termodinamik dengedeyse ve yüzeyi tüm dalga boylarında ideal bir soğuruculuğu varsa kara cisim olarak nitelendirilir. Kara cisim ideal bir yayıcıdır. Bu tür ideal yayıcılara kara cisim ışınımı olarak adlandırılır. Bir cismin yaymasının kara cismin yaymasına oranına yayıcılık denir. Cismin soğuruculuğu, yansıtıcılığı ve yayıcılığı dalga boyuna ve ışınıma bağlıdır. Elektromanyetik ışınımın dalga boyu dağılımını sıcaklık belirler. Mesela yeni yağmış bir kar, görülür ışığı çok fazla yansıtır. Güneş ışınlarını 0.5 mikrometre dalga boyuyla yansıttığı için beyaz görünür. Fakat yayıcılığı -5 °C de, 12 mikrometre dalga boyundadır. Kara cisim, değişen frekanstan dolayı sahip olduğu güç dağılımı Planck kanunu ile açıklanmıştır. Herhangi bir sıcaklıkta, yayılan maksimum güçte, frekans fmax dır. Wien’ in yer değiştirme kanununa göre, ışığın frekansı boşlukta dalga boyuna ters orantılıdır. Bu kara cismin mutlak sıcaklığının maksimum frekansa doğru orantılı olduğu anlamına geliyor. Güneşteki fotosfer(yaklaşık 6000 kelvin sıcaklığında) insan gözüyle görülebilecek elektromanyetik tayf ışınım yayar. Dünya atmosferi kısmen şeffaftır ve ışık yüzeye ulaşır, soğurulur ve yansıtılır. Dünya yüzeyi soğurulan ışınımı yayar ve 300 kelvin civarında ve uç fmax tayfta kara cisim gibi davranır. Bu düşük frekanslarda, atmosfer opaktır ve dünyadan geln ışınımlar atmosfer tarafından soğurulur. Bazı ışınımlar uzaya kaçsa da çoğu soğurulur ve daha sonradan atmosferdeki gazlarca tekrar yayılır. Bu sera etkisinden sorumlu atmosferin seçiçi tayfıdır ve bu küresel ısınmaya ve iklimlerin değişmesine neden olur. Çoğu daha uzun dalga boylarının fotonlarıyla ilişkili olan enerji türleri insanların görmesine yardımcı olmaz fakat çevreye ısı transferi olmasına neden olur. Her ne zaman EM ışınları yayılır ve daha sonra soğurulursa sıcaklık aktarılmış olur. Bu prensip mikro dalga fırınlarında kullanılmaktadır. İlekten ve konvektif ısı transfer biçimlerinin aksine, ısıl ışınımı ayna kullanarak küçük bir spotta yoğunlaştırılabilir. Yek-odaklı güneş enerjisi santralleri bu durumu avantaj olarak kullanır. Birçok sistemde güneş ışığı ayna kullanarak küçük alanlarda yoğunlaştırılır. Fresnel lenses bu durumu ısı akışını yoğunlaştırmak için kullanmıştır. Her iki kullanım da güneş ışığını kullanarak suyu hızlı bir şekilde buharlaştırmak için kullanılabilir.

Yüzey Etkisi

Açık renkler, beyazlar ve metalik maddeler daha az aydınlatıcı ışıkları soğurur ve doğal olarak daha az ısıtır. Fakat aksi bir durumda renk küçük bir fark yapar ısı transferi açısından. Güneş ışığı hariç, elbiselerin rengi küçük bir fark yapar sıcaklık açısından Metalik yüzeyler hem görünülür dalga boyunda hem de kızıl ötesi ışınlarında düşük yayıcılığı vardır.

Özellikler

Isıl ışınımın karakterini belirleyen dört ana özellik vardır.

  • Herhangi bir sıcaklıkta cisim tarafından yayılan ışınım geniş frekans dizisinden oluşur. İdeal yayıcı için frekans dağılımı kara cisim için Planck kanununda verilmiştir.
  • Yayılmış ışınımın baskın frekans dizilimi, yayıcının sıcaklığı arttığı gibi daha yüksek frekanslara kayar. Mesela kırmızı sıcak cisim, görülebilir ışığın uzun dalga boyları ışınımı yapar. Eğer daha fazla ısıtılırsa, mavi ve yeşil ışık ışınımı yapmaya başlar ve görülebilir dizi boyunca frekans genişliği insanın gözüne beyaz olarak gösterir. Gözümüze beyaz gözüktüğü zaman yaklaşık 2000 k sıcaklığında olduğunda bile enerjisinin %99 u hala kızılötesidir. Bu Wien’in yer değiştirme kanununda belirtilmiştir.
  • Tüm frekans değerlerinin toplam ışınımı sıcaklık arttıkça o da adım adım artar. T4 olarak artar. T dediğimiz sıcaklıktır. Mesela fırınla oda sıcaklığını karşılaştırdığımızda (600 kelvine 300 kelvin) birim alana etki eden ışınma da 2 üzeri 4 16 kat daha fazladır fırında. Bu artış oranı Stefan–Boltzmann kanununda açıklanmıştır.
  • Herhangi bir frekansta yayılan elektromanyetik ışınma, kaynak tarafından ölçülmüş soğurma miktarıyla doğru orantılıdır. Bu prensip dalga konusunun bütün özelliklerine uygulanır, dalga boyu, polarizasyon ve yön konuları da dahil.

Enerjideki Değişim

Isıl ışınım, ısı transferi mekanizmasının prensiplerinden birisidir. Bu, maddenin sıcaklığından dolayı olan elektromanyetik ışınım tayfının yayılımını gerektirir. Diğer mekanizmalar ise taşınım ve kondüksiyondur. Isıl ışınımla olmuş olan enerji etkileşimindeki değiş tokuş altta verilen denklemle gösterilir.

Denklemdeki soğurma tayf bileşeni, dediğimiz yansıma tayf bileşeni ve iletim tayf bileşeni. Bu elementler elektromanyetik ışınımın dalga boyu () fonksiyonudur. Cismin soğurumu, yayıcılığına eşittir . Kara cisim için tüm frekanslarda aşağıdaki denklem geçerlidir.

Isıl ışınımdan dolayı insan önemli derecede enerjisini kaybeder. Fakat yayılan kızıl ötesi ışınlar nedeniyle kaybedilen enerji, cismin çevresinden kondüksiyon yöntemiyle sağlanan ısı akışı saoğurularak bir kısmı tekrar kazanılır. İnsan derisinin yayıcılığı 1.0’a yakındır.[4] Aşağıdaki formülleri kullanarak insan, 2 metre karelik alanda sıcaklık yaklaşık 307 kelvinde, sürekli yaklaşık 1000 wattlık ışınım yapar. Fakat birkaç insan etrafı bir alanla çevrilmiş olsun ve sıcaklığı 296 kelvin olsun. İnsanlar duvardan, tavandan yaklaşık 900 watt enerji çekeceklerdir yani net kayıp 100 watt olacaktır. Bu ısı transferi konusu dış etkenlere fazlaca bağlıdır. Mesela giyilen elbiseler. Cisimler arası ısı transferi hesaplamasında Radiosity metodu kullanılır. Bu hesaplamalarda, bir yüzeyden çıkan ışınımların, diğer yüzeye çarpan ışınımların oranıdır. Bu hesaplamalar, güneş enerjisi santrali, kazan ve ışın izleme gibi teknolojik alanlar için önemlidir. Seçilen yüzey güneşten geleni kullanmak için yapılır. Mesela sera etkisinden beri çoğu çatlar camdan yapılmıştır. Cam şeffaftır. Bu nedenle ışınımı görünür dizine sokar yani bizim görmemize neden olur. Cisimden yayılan ışınım oda sıcaklığına yakın sıcaklıkta çıkmaz. Bu tuzak bizim ısı olarak hissettiğimiz şeydir. Bu sera etkisi olarak bilinir ve gündelik hayatta gözlemlenir mesela arabada, güneşte otururken. Seçici yüzeyler güneş ışığı toplayan cihazlarda kullanılır. Hesaplamalarla, güneş ışınımlarıyla ısıtılmış bir plakayla örtülmüş seçilmiş yüzeye ne kadar yardım ettiğini bulabiliriz. Eğer plaka, güneşten 1350 W/m² lik bir ışınım alıyorsa, sıcaklık çıkan ışınım gelen ışınıma eşit olacağından 393 kelvin olacaktır. Eğer plaka 0.9 yayıcılığı ve 2.0 µm dalga boyuna sahip, sıcaklık yaklaşık 1250 kelvin olacaktır. Bu hesaplamalar bulutlu bir hava ve konvektif ısı transferi gibi konuların ihmal edilmesiyle bulunmuştur.

Işınımsal Isı Transferi

Bir yüzeyden diğer yüzeye olan ısı transferi, ilk yüzeyden diğer yüzey giren ışınıma eşittir.

  • Kara cisim için

Buradan . Basitleştirirsek

İki yüzeyin ısı transferi:

Işınım Gücü

Kara cismin ısısal ışınım gücü, birim alanın, birim katı cisim açısının, birim frekansın Planck kanununda belirtildiği gibi;

Ya da dalga boyu cinsinden;

sabit bir sayıdır. Yukarıdaki denklemler olabilecek tüm frekansların integralinden türetilmiştir. her bir fotonun enerjisi, uygun frekans sayısıyla çarpılarak elde edilir. Yukarıdaki nin integrali alındığında

sabit bir orantıdır ve ise ışınım yapan yüzey alanı. Yayıcılık yoğunluğu en yüksek olan için dalga boyu, Wien’in yer değiştirme kanununda da belirtildiği gibi;

Kara cisim olmayanlar için yayıcılık faktörü olarak düşünülmek zorundadır.

Aşağıdaki grafik kara cismin yayıcılık gücünü sıcaklığa bağlı olarak değişimini Stefan-Boltzmann kanununa dayanarak göstermektedir. Likit nitrojen

Ayrıca bakınız

Kaynakça

  1. ^ K. Huang, Statistical Mechanics (2003), p.278
  2. ^ K. Huang, Statistical Mechanics (2003), p.280
  3. ^ a b S. Blundell, K. Blundell (2006). Concepts in Modern Physics. Oxford University Press. s. 247. ISBN 978-0-19-856769-1. 
  4. ^ R. Bowling Barnes (24 Mayıs 1963). "Thermography of the Human Body Infrared-radiant energy provides new concepts and instrumentation for medical diagnosis". Science. 140 (3569). ss. 870-877. Bibcode:1963Sci...140..870B. doi:10.1126/science.140.3569.870. PMID 13969373. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

Elektromanyetik tayf veya elektromanyetik spektrum (EMS), evrenin herhangi bir yerinde fizik kurallarınca mümkün kılınan tüm elektromanyetik radyasyonu ve farklı ışınım türevlerinin dalga boyları veya frekanslarına göre bu tayftaki rölatif yerlerini ifade eden ölçüt. Herhangi bir cismin elektromanyetik tayfı veya spektrumu, o cisim tarafından çevresine yayılan karakteristik net elektromanyetik radyasyonu tabir eder.

<span class="mw-page-title-main">Işık</span> elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon

Işık veya görünür ışık, elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon. Görünür ışık genellikle 400-700 nanometre (nm) aralığında ya da kızılötesi ve morötesi arasında 4.00 × 10−7 ile 7.00 × 10−7 m dalga boyları olarak tanımlanır. Bu dalga boyu yaklaşık 430-750 terahertz (THz) frekans aralığı anlamına gelir.

Işıldama veya lüminesans, bazı maddelerin, ısısı değişmeksizin elektromanyetik ışınım yaymasıdır Işıldama olarak da bilinir.

<span class="mw-page-title-main">Işınım enerjisi</span>

Işınım enerjisi, elektromıknatıssal dalgaların enerjisidir.

<span class="mw-page-title-main">Termografi</span> kızılötesi görüntülemenin bir çeşidi

Termografi, termal görüntüleme veya termal video, kızılötesi görüntülemenin bir çeşididir. Termografik kameralar elektromanyetik spektrumun kızılötesi bölümündeki elektromanyetik ışınımı tespit ederler ve bu ışınımdan resimler oluştururlar. Kızılötesi ışınım sıcaklıklarına göre tüm cisimlerden salınır, Kara cisim ışıması kanununa göre, termografi görünür aydınlatma olmadan cisimlerin görünebilmesini sağlar. Bir cisim tarafından salınan ışınımın miktarı sıcaklık arttıkça artar, bu yüzden termografi sıcaklıktaki farkları görmemizi sağlar. Termografik bir kamera tarafından görüntülendiklerinde, sıcak cisimler daha soğuk arka planların yanında oldukça göze çarpar; insanlar ve diğer sıcak kanlı hayvanlar, gündüz veya gece, çevrede rahatlıkla görülebilir hale gelir. Sonuç olarak termografinin geniş kullanımı tarihi olarak askeri ve gizli servislere bağlanmaktadır.

Işık akısı bir fiziksel niceliktir ve insan gözünün algıladığı ışık gücünün miktarını ifade eder. Bu tariften de anlaşıldığı gibi, ışık akısı hem ışınım yapan kaynağın gücüne hem de insan gözünün özelliğine bağlıdır. SI birimi MKS sisteminde lumen dir.

Işık şiddeti bir ışık kaynağından birim katıaçı içerisinde yayılan ışık akısının bir ölçüsüdür. Işık akısı dendiği zaman, kaynaktan yayılan toplam akı, ışık şiddeti dendiği zaman ise bir steradyanlık katı açı içerisindeki akı kastedilir. MKS sistemi içerisinde ışık akısının birimi lumen, ışık şiddetinin birimi ise candela ya da Türkçe söylenişi ile kandeladır.

Işık, bir enerji çeşididir. Sabit kütleli sis­temlerde enerji yoktan var edilemez. Ancak bir biçimden diğerine dönüşebilir. Bu yüzden ışık, yalnızca enerjinin bir başka biçiminin dönüştürülmesiyle elde edilir. Elektrik enerjisi bir elektrik lambasında ya da deşarj tüpünde ışığa dönüştürülür. Kimyasal enerji ve ateşböceği gibi ışık saçan hayvanlarda ışığa dönüşür. Bu dönüşüm ters yönde de olabilir. Örneğin bir fotoelektrik hücrede ışık elektrik enerjisi üretir.

Işık gözün algıladığı elektromanyetik ışınıma verilen isimdir. Işık gücünün toplam elektromanyetik ışınım gücüne olan oranı ise Batı dillerinde efficacy olarak adlandırılır. Bu terim dilimize ışık verimliliği ya da ışık etkinliği olarak çevrilebilir. Elektromanyetik ışınımın kızılötesi ve morötesi kısımları aydınlatma için kullanılamaz. Bir kaynağın tam ışık verimi, elektromanyetik ışınımın insan gözü tarafından ne derece algılandığı ile ilgilidir.

<span class="mw-page-title-main">Radyasyon</span> Uzayda hareket eden dalgalar veya parçacıklar

Radyasyon veya ışınım, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. "Radyoaktif maddelerin alfa, beta, gama gibi ışınları yaymasına" veya "Uzayda yayılan herhangi bir elektromanyetik ışını meydana getiren unsurların tamamına" da radyasyon denir. Bir maddenin atom çekirdeğindeki nötronların sayısı, proton sayısına göre oldukça fazla veya oldukça az ise; bu tür maddeler kararsız bir yapı göstermekte ve çekirdeğindeki nötronlar alfa, beta, gama gibi çeşitli ışınlar yaymak suretiyle parçalanmaktadırlar. Çevresine bu şekilde ışın saçarak parçalanan maddelere radyoaktif madde denir.

<span class="mw-page-title-main">İyonlaştırıcı olmayan radyasyon</span> Düşük frekanslı radyasyon

İyonlaştırıcı olmayan radyasyon, bir atomdan veya molekülden bir elektronu tamamen koparabilmek için atomları veya molekülleri iyonlaştırabilecek yeterli enerji taşıyan kuantumlara sahip olmayan herhangi bir elektromanyetik radyasyon türüdür. Elektromanyetik radyasyon, maddenin içinden geçerken yüklü iyonlar üretmez. Yalnızca, bir elektronu daha yüksek enerji seviyesine çıkaran uyarım için yeterli enerjiye sahiptir. İyonlaştırıcı olmayan radyasyondan daha yüksek bir frekansa ve daha kısa dalga boyuna sahip olan iyonlaştırıcı radyasyon birçok kullanım alanına sahiptir, ancak sağlık için bir tehdit olabilir. İyonlaştırıcı radyasyona maruz kalmak yanıklara, radyasyon hastalıklarına, kansere ve genetik hastalıklara sebep olabilir. İyonlaştırıcı radyasyon kullanmak, iyonlaştırıcı olmayan radyasyon kullanılırken genelde gerekli olmayan dikkatli ve özenle alınmış radyolojik korunma önlemleri gerektirir.

<span class="mw-page-title-main">Emisyon</span> bir cismin elektromanyetik enerji yayma kapasitesi

Salım ya da emisyon, bir materyalin yüzeyinin nispi olarak radyasyon ile enerji yayma yeteneğidir. Ayrıca emisyon, aynı sıcaklıkta, belirli bir materyalin yaydığı enerjinin, bir kara cisim tarafından yayılan enerjiye oranı olarak da ifade edilmektedir. Bir gerçek nesne için ε < 1 koşulu olduğu zaman, gerçek bir kara cisim için ε = 1'dir. Emisyon boyutsuz bir niceliktir.

Etkin sıcaklık genel olarak bir cismin emisyon eğrisi ya da dalga boyu fonksiyonu, bilinmediği zaman, o cismin sıcaklık değerini tahmin etmek amacıyla kullanılır. Yıldız ya da gezegen gibi bir cismin etkin sıcaklığı, bir kara cismin yaydığı toplam radyasyon enerjisinin bu cismin yaydığı enerjiye eşit olduğu zamanki sıcaklık değeridir.

<span class="mw-page-title-main">Kara cisim ışınımı</span> opak ve fiziksel yansıma gerçekleştirmeyen siyah cisimden yayılan ve sabit tutulan tekdüze ısı

Siyah cisim ışıması içinde elektromanyetik ışıma ya da çevresinde termodinamik dengeyi sağlayan ya da siyah cisim tarafından yayılan ve sabit tutulan tekdüze ısıdır. Işıma çok özel bir spektruma ve sadece cismin sıcaklığına bağlı olan bir yoğunluğa sahiptir. Termal ışıma, birçok sıradan obje tarafından kendiliğinden yayılan bir siyah cisim ışıması sayılabilecek türden bir ışımadır. Tamamen yalıtılmış bir termal denge ortamı siyah cisim ışımasını kapsar ve bir boşluk boyunca kendi duvarını yaratarak yayılır, boşluğun etkisi göz ardı edilebilecek kadar küçüktür. Siyah cisim oda sıcaklığında siyah görünür, yaydığı enerjinin çoğu kızılötesidir ve insan gözü ile fark edilemez. Daha yüksek sıcaklıklarda, siyah cisimlerin özkütleleri artarken renkleri de soluk kırmızıdan kör edecek şekilde parlaklığı olan mavi-beyaza dönüşür. Gezegenler ve yıldızlar kendi sistemleri ve siyah cisimler ile termal dengede olmamalarına rağmen, yaydıkları enerji siyah cisim ışımasına en yakın olaydır. Kara delikler siyah cisim olarak sayılabilirler ve kütlelerine bağlı bir sıcaklıkta siyah cisim ışıması yaptıklarına inanılır . Siyah Cisim terimi, ilk olarak Gustav Kirchhoff tarafından 1860 yılında kullanılmıştır.

Termodinamikte, Kirchoff'un termal radyasyon kanunu, ışınımsal değişim dengesini de içeren, termodinamik dengede kendine özgü salınım ve emilim yapan herhangi bir maddenin dalga boyuna denktir.

<span class="mw-page-title-main">Planck yasası</span> belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eden terim

Planck yasası belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eder. Yasa 1900 yılında Max Planck bu ismi önerdikten sonra isimlendirilmiştir. Planck yasası modern fiziğin ve kuantum teorisinin öncül bir sonucudur.

<span class="mw-page-title-main">Kara cisim</span> Üzerine gelen tüm ışınımı absorbe eden fiziksel cisim

Kara cisim üstüne gelen tüm elektromanyetik radyasyonu frekans ve yön gözetmeden sönümleyen idealize edilmiş fiziksel cisme verilen isimdir. Üzerinde çok küçük bir delik olan bir küreye benzetilebilir. Üzerine gelen tüm ışınımı absorbe eden bir sistemdir

<span class="mw-page-title-main">Debye modeli</span>

Termodinamik ve katı hal fiziğinde Debye modeli; Peter Debye tarafından 1912 yılında geliştirilen, katılarda özgül ısıya (ısı kapasitesi) olan fonon katkısını tahmin etmek için kullanılan metottur. Atomik kristal yapının salınımlarını, bir kutu içerisindeki fononlar gibi düşünerek ele alır. Bu; katıya ayrı ayrı kuantum harmonik osilatörlerden oluşmuş olarak davranan Einstein modelinin tam tersidir. Debye modeli;  – Debye T3 yasası - ısı kapasitesini düşük sıcaklıklarda doğru bir şekilde tahmin eder., düşük sıcaklıklarda olan. Tıpkı Einstein modeli gibi, yüksek sıcaklıklarda Dulong–Petit Yasasını da doğru bir şekilde kapsar. Ama, ara sıcaklıklarda basitleştirmek için yapılan varsayımlar nedeniyle doğruluğu kusurludur.

<span class="mw-page-title-main">Wien yasası</span>

Fizikte Wien yasası siyah cisim radyasyonunda sıcaklık ile ışık dalga boyu arasındaki ilişkiyi veren bir fizik yasasıdır. Yasa adını Alman bilim insanı Wilhelm Wien'den (1864-1928) alır.