İçeriğe atla

Isı pompası

Gerçekte bir soğutma çevrimi olan ısı pompası çevriminin temel prensibini Nicolas Léonard Sadi Carnot 1824 yılında ortaya atmıştır. 26 yıl sonra 1850 yılında Lord Kelvin'in, soğutma cihazlarının ısıtma maksadı ile kullanılabileceğini ileri sürmesiyle ısı pompası uygulamaya girdi. II. Dünya Savaşı'ndan önce ısı pompasının geliştirilmesi ve kullanılır hâle getirilmesi için birçok mühendis ve bilim insanı bu alanda araştırmalar ve çalışmalar yaptı. Savaş yıllarında endüstri, imkânlarını daha acil problemlere yönelttiği için ara verilen bu çalışmalara savaştan sonra tekrar başlandı.

Isı pompası endüstrisinin 1950‘lerde sahip olduğu potansiyel, yüksek kuruluş maliyeti, doğalgaz ve petrole dayanan enerjinin ucuzlaması nedeniyle ısı pompasına olan güven 1960'lı yıllarda azaldı. Isı pompalarının bu duraklamadan sonra önem kazanması 1973'teki enerji krizinden sonra olmuş ve bu tarihten sonra birçok çalışma yapılmıştır.

Küçük boyutlarıyla karakterize edilen mini-split cihazları, ısı pompaların bir örneğidir ve günümüzde ortamlarda hem soğutma hem de ısıtma uygulamaları için yaygın olarak kullanılır.

Çalışma ilkeleri

Isı pompası çevrim şeması:
1. Yoğuşturucu (Kondansör)
2. Genişleme vanası (Kısılma vanası olarak da rastlanabilir)
3. Buharlaştırıcı (Evaporatör)
4. Kompresör

Isı pompası, dışarıdan enerji verilmesi ile düşük sıcaklıktaki bir ortamdan aldığı ısıyı yüksek sıcaklıktaki ortama veren bir makinedir. Kışın ısıtma maksadı ile kullanılan ısı pompası, yazın da soğutma için kullanılabilir (bu durumda soğutma makinesi olarak adlandırılır).[1]

Bir ısı pompasının en önemli karakteristiği performans katsayısıdır (COP veya COPIP). Verimli bir ısı pompası sistemin COP değerleri 4 ve daha yüksek olabilir, yani sisteme girilen her bir birim girdi karşılığında 4 birim enerji hasıl olur. Japonya'daki COP değerleri 5'in üzerindedir. En iyi ısı pompaları 6.8 COP değerine ulaşmaktadır.

Soğutma makineleri ve ısı pompaları aynı çevrimi gerçekleştirirler fakat kullanım amaçları farklıdır. Bir soğutma makinesinin amacı düşük sıcaklıktaki ortamı, ortamdan ısı çekerek çevre sıcaklığının altında tutmaktır. Daha sonra çevreye veya yüksek sıcaklıktaki bir ortama ısı geçişi, çevrimi tamamlaması için yapılması zorunlu bir işlemdir fakat amaç değildir. Isı pompasının amacı ise bir ortamı sıcak tutmaktır. Bu işlevi yerine getirmek için düşük sıcaklıktaki bir ısıl enerji deposundan alınan ısı, ısıtılmak istenen ortama verilir. Düşük sıcaklıktaki ısıl enerji deposu genellikle soğuk çevre havası, kuyu suyu veya toprak, ısıtılmak istenen ortam ise bir evin içidir.

Isı pompası sistemlerinde, buharlaştırıcıların ısı çektiği ortamlara “ısı kaynakları” denir. Isı pompası için çok önemli olan bu kaynakların ısı pompası ile uyum sağlayabilmesi, aşağıda belirtilen şartlara bağlıdır:

    • Kaynak sıcaklığının fazla değişmemesi,
    • Kaynak sıcaklığının mümkün olduğu kadar yüksek olması,
    • Kaynağın bol bulunabilir olması ve coğrafi koşullardan mümkün olduğu kadar az etkilenmesi,
    • Kaynağın kirli olmaması,
    • Korozyona sebep olmaması

Bir ısı pompasının teknik ve ekonomik performansı, ısı kaynağının karakteristiğine bağlıdır. Binalarda kullanılan ısı pompaları için ideal bir ısı kaynağı, ısıtma dönemi boyunca yüksek ve fazla değişmeyen sıcaklığa, bol bulunabilirliğe, aşındırıcı ve kirletici etkenler taşımamasına, uygun termofiziksel özelliklere, düşük yatırım ve işletim maliyetine sahip olmalıdır. Çoğu durumda ısı kaynağının bulunabilirliği, en önemli etken olmaktadır. Isı pompalarında kaynak olarak :

    • Çevre havası[2][3]
    • Toprak
    • Deniz, nehir, göl suyu
    • Yeraltı suları
    • Artık sıvılar
    • Artık gazlar
    • Artık ısılar
    • Güneş
    • Kaya

kullanılabilir. Hepsinin farklı özellikleri vardır.

Çevre havası : Bolca bulunur ve ısı pompaları için en çok kullanılan ısı kaynağıdır. Hava kaynaklı ısı pompalarının mevsimlik performans faktörü (SPF) toprak kaynaklı ısı pompalarından %10 – 30 daha düşüktür. Bunun nedeni olarak, dış hava sıcaklığının düşmesi ile buharlaştırıcıda yüksek sıcaklık farkı oluşması ve bu durumda buharlaştırıcının buzlanması ve fanların çalıştırılması için gerekli enerji, kapasite ve performansta hızlı düşüşe yol açması gösterilebilir. Hava kirliliği de bir dezavantajdır.

Toprak : İyi bir kaynaktır fakat ısı değiştiricisini toprağa gömmek, korozyonu önlemek için de iyi malzeme kullanmak gerekir. Bu da ilk yatırım masrafını artırır.

Deniz, nehir, göl suları : Isı pompaları için iyi bir kaynaktırlar. Nehir ve göl sularının kışın donma sorunu vardır. Bu sorun deniz için çok önemli değildir. Bu sularda kirlilik sorunu vardır. Coğrafi şartlardan da çabuk etkilenirler.

Yeraltı suları : Yıl boyunca sıcaklık değişimi azdır. Taşınması için pompa kullanılıyorsa ek enerji kullanılıyor demektir. İçine pis suların karışması tehlikelidir. Isı değiştiricilerinin yer altına gömülmesi korozyona neden olabilir ve maliyeti artırır.

Artık gazlar : Ev ve ticari binalardaki ısı pompaları için önemli ısı kaynağıdır. Isı pompası, havalandırmadan aldığı ısıyı hacim ve su ısıtmak için kullanır.

Artık ısılar : Prosese bağlı olarak bazı avantajları veya dezavantajları olabilir.

Güneş : İyi bir kaynaktır. İlk yatırım masrafı çok, fakat bakım masrafı az ve temizdir.

Isı pompaları ayrıca, tek başına ya da ek bir sistemle birlikte kullanılabilir. Isıtma ihtiyacını tek başına karşılayanlara “monovalent ısı pompaları”, ek kaynak yardımıyla bu ihtiyacı karşılayanlara ise “bivalent ısı pompaları” denir. Bivalent durumda ısı pompası ısıtma yükünün %50 – 95‘ini karşılar. Bivalent sistemlere örnek olarak güneş toplayıcıları ve kazanlar verilebilir. Bu ikili sistemlerin çalışması da sıralı veya birlikte olmaktadır. Sıralı çalışma, bir sistem devreden çıktığında ötekinin devreye girmesidir. Isı pompası – kazan sistemi bu şekilde çalıştırılabilir. Isı pompasının çalıştırılmasının ekonomik olmadığı durumlarda ısı pompası devreden çıkar ve kazan devreye girer. Birlikte çalışmaya örnek olarak da ısı pompası – güneş toplayıcıları sistemi verilebilir. Binanın ısıtılmasında kullanılan ısı pompasının çalışması için gerekli sıcaklık aralığı güneş enerjisi sayesinde sağlanabilir.

Isı pompası termodinamiği

Isı pompasını, basitçe ısı makinesinin tersi bir çevrim olarak göz önüne alabiliriz. Isı makinesi, yüksek sıcaklıktaki ortamdan ısı çekerek, düşük sıcaklıktaki ortama aktaran ve bu işlemi yaparken dışarıya iş veren makinedir. Isı pompası ise, dışarıdan enerji verilmesi ile düşük sıcaklıktaki ısı kaynağından aldığı ısıyı yüksek sıcaklıktaki ortama veren makinedir.

Kışın ısıtma maksadı ile kullanılan ısı pompası, yazın da soğutma için kullanılabilir. Isının, soğuk ısı kaynağından sıcak ısı kaynağına nakledilmesi çeşitli şekillerde gerçekleştirilebilir. Buna göre ısı pompası çeşitleri aşağıdaki gibidir:

Genellikle “Buhar sıkıştırmalı çevrimli” ve “Absorbsiyonlu” ısı pompası çeşitleri kullanılır.

Isı pompalarının büyük çoğunluğu buhar sıkıştırmalı çevrim prensibine göre çalışır. Basit bir ısı pompasının ana elemanları kompresör, genişleme vanası (expansion valve) ile buharlaştırıcı (evaporator) ve yoğuşturucu (condenser) olarak adlandırılan iki adet ısı değiştiricisidir.

İdeal buhar sıkıştırmalı ısı pompası çevriminin T – s diyagramı
İdeal buhar sıkıştırmalı ısı pompası çevriminin P – h diyagramı

T – s ve P – h diyagramlarından da görüleceği gibi çevrimi oluşturan hal değişimleri şöyledir:

  • 1 – 2' : Kompresörde izentropik (tersinir – adyabatik) sıkıştırma
  • 2' – 3 : Yoğuşturucuda çevreye sabit basınçta ısı geçişi
  • 3 – 4 : Genişleme vanasında sabit entalpide genişleme
  • 4 – 1 : Buharlaştırıcıda akışkana sabit basınçta ısı geçişi

Buharlaştırıcıdan çıkan doymuş buhar kompresörde izentropik olarak daha yüksek bir basınç ve sıcaklığa sıkıştırılarak kızgın buhar haline getirilir (1 – 2' durumu). Daha sonra yoğuşturucuya giren kızgın buhar, kullanılabilir ısısını dışarıya vererek sabit basınçta yoğuşur (2' – 3 durumu). Doymuş sıvı haldeki yüksek basınçlı akışkanın basıncı ve sıcaklığı genişleme vanasında buharlaştırıcı şartlarına getirilir (3 – 4 durumu). Buharlaştırıcıya giren akışkanın sıcaklığı ısı kaynağının sıcaklığından düşük olduğundan, ısı kaynağından akışkana sabit basınçta ısı geçişi olur ve akışkan buharlaşır (4 – 1 durumu). Buradan sonra çevrim yeniden başlar ve bu şekilde devam eder.

Ayrıca bakınız

Kaynakça

  1. ^ yalova.csb.gov.tr. "Isı Pompası Nedir? Isı Pompası Nasıl Çalışır?". yalova.csb.gov.tr. 17 Ağustos 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Şubat 2024. 
  2. ^ "Türkiye'de Konut ve Sanayi Sektörünün Elektrifikasyonu - SHURA". 16 Ağustos 2023. 19 Ağustos 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Eylül 2023. 
  3. ^ "Isı pompaları ile enerjide yüzde 60 tasarruf mümkün". Anadolu Ajansı. 22 Şubat 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Şubat 2024. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Soğutma çevrimi</span>

Bir soğutma çevrimi, soğutucu bir akışkanın ısıyı emmesi ve daha sonra yayması ile oluşan değişikliklerin tanımlandığı, bir soğutucu içinde gerçekleşen çevrimdir.

Mekanik sıkıştırmalı soğutma çevrimi, en yaygın soğutma çevrimidir. Soğutucu akışkanın düşük basınçta çevreden ısı alarak buharlaşmasını sağlayan eleman buharlaştırıcıdır. Evaporatörden alınan buharı yüksek basınçlı kondensere basan eleman kompresördür. Kompresörden gelen sıcak kızgın gazın ısısını alarak onun yoğunlaşmasını sağlayan eleman kondenserdir (yoğunlaştırıcı). Sıvı hale gelen soğutucu akışkanın toplanabileceği eleman sıvı deposudur. (receiver) Sıvı deposundan gelen sıvı soğutucu akışkanın geçişini çeşitli metotlarla kısıtlayarak evaporatörde düşük basınç oluşmasını, dolayısıyla soğutucu akışkanın buharlaşacak hale gelmesini sağlayan eleman genleşme valfidir.

<span class="mw-page-title-main">Pompa</span>

Pompa, genelde elektrik enerjisini hidrolik enerjiye çevirerek sıvıları veya bazen çamur gibi bulamaçları, mekanik güçle hareket ettiren makinadır.

<span class="mw-page-title-main">Rankine çevrimi</span>

Rankine çevrimi, termodinamik bir çevrimdir. Diğer termodinamik çevrimler gibi, Rankine çevriminin maksimum verimi de, Carnot çevriminin maksimum verimli hesaplanması ile elde edilir. Rankine çevrimi adını William John Macquorn Rankine'den alır.

Brayton çevrimi, genel olarak gaz türbinlerinde kullanılan, periyodik bir prosestir. Günümüzde geçerli olan gaz akışkanlı güç çevrimleri içinde önemli bir yer tutar. Diğer içten yanmalı güç çevrimleri gibi açık bir sistem olmasına rağmen; termodinamik analiz için egzoz gazlarının ikinci bir ısı değiştirgecinden geçtikten sonra içeri alınıp tekrar kullanıldığı farzedilir ve kapalı bir sistem gibi analize uygun hale gelir. İsmini, mucidi olan George Brayton’dan almıştır. Aynı zamanda Joule çevrimi olarak da bilinir.

<span class="mw-page-title-main">Termodinamik çevrim</span>

Termodinamik çevrim, bir veya daha çok hal değişimi gerçekleştiren, veya enerji üreterek veya enerjiyi transfer ederek ilk haline dönen bir çalışma akışkanı içeren çevrimlerdir. Tabloda termodinamik çevrimlerin listesi verilmiştir.

<span class="mw-page-title-main">Stirling motoru</span>

Stirling motoru, sıcak hava motoru olarak da bilinir. Dıştan yanmalı motorlu bir ısı makinesi tipidir. Isı değişimi prosesi, ısının mekanik harekete dönüşümünün ideal verime yakın olmasına izin verir.

<span class="mw-page-title-main">Klima</span>

Klima, elektrikli klima veya pasif soğutma ve havalandırmalı soğutma dâhil olmak üzere çeşitli diğer yöntemlerin kullanımıyla daha konforlu bir iç ortam elde etmek için kapalı bir alandaki havanın ısı ve nem kontrol edilmesi işlemidir. Klima, "ısıtma, havalandırma ve klima" (HVAC) sağlayan sistem ve teknikler ailesinin bir üyesidir.

<span class="mw-page-title-main">Buzdolabı</span>

Buzdolabı; yaygın olarak buhar sıkıştırma çevrimine göre çalışan, gıdaların soğuk tutularak uzun zaman muhafaza edilmesini sağlayan soğutma makinesidir. Bu bağlamda absorpsiyonlu soğutma ve ayrıca Peltier soğutma sistemleri ile çalışan buzdolapları da mevcuttur.

Isıtma sistemleri, kullanım mekanlarının istenen sıcaklıkta tutulabilmesi için iç ortamdan dış ortama olan ısı kaybının karşılanması prensibi ile çalışan sistemlerdir. Merkezi ve lokal (bölgesel) olarak iki ana başlıkta toplanabilir.

<span class="mw-page-title-main">Soğutma</span>

Soğutma, bir maddenin veya ortamın sıcaklığını, onu çevreleyen ortamın sıcaklığının altına indirmek ve orada muhafaza etmek üzere ısısının alınması işlemine denir.

<span class="mw-page-title-main">Buharlaştırıcı</span>

Buharlaştırıcı, kaynama noktası farkından yararlanarak karışımları birbirinden ayırmayı sağlayan bir endüstriyel ekipmandır. Buharlaştırıcılar bir çözeltideki çözücü maddeyi veya bir sıvı karışımdaki daha düşük kaynama noktasına sahip bileşeni buharlaştırarak uzaklaştırılmasını sağlar. Neredeyse bütün endüstriyel işlemlerde çözücü bileşen sudur, suyun uzaklaştırılmasıyla daha derişik bir karışım elde edilmiş olur. Sıvı halde kalan derişik karışım genelde üründür. Buharlaşan bileşen su ise oluşan su buharı atmosfere verilebilir ya da içerdiği ısı sebebiyle endüstriyel süreçlerde tekrar kullanılabilir. Buharlaşan bileşen eğer su haricinde bir çözücü maddeyse değerli olduğundan ötürü uzaklaştırılmaz ve tekrar kullanılır.

<span class="mw-page-title-main">Termik santral</span> ısı enerjisinin elektrik enerjisine dönüştürüldüğü santral türü

Termik santral, ana işletici makinesi buhar gücüyle çalışan güç santralıdır. Isıtılan su buhara dönüştürülerek bir elektrik üretecini süren buhar türbinini döndürmekte kullanılır. Türbinden geçen buhar Rankine çevrimi denilen yöntemle bir yüzey yoğunlaştırıcıda yoğunlaştırılırak geri suya dönüştürülür. Termik santralların tasarımları arasındaki en büyük farklılık kullandıkları yakıt tiplerine göredir. Bu tesisler ısı enerjisini elektrik enerjisine dönüştürmekte kullanıldığından bazı kaynaklarda enerji dönüşüm santrali olarak da geçer. Bazı termik santrallar elektrik üretmenin yanı sıra endüstriyel ve ısıtma amaçlı ısı üretimi, deniz suyunun tuzdan arındırılması gibi amaçlarla da kullanılır. İnsan üretimi CO2 emisyonunun büyük kısmını oluşturan fosil yakıtlı termik santralların çıktılarını azaltma yönünde yoğun çabalar harcanmaktadır.

<span class="mw-page-title-main">Ejektörlü pompa</span>

Ejektörlü pompa, bir enjektör veya fışkırtıcı kısılıp genişleyen bir memenin ventüri etkisini kullanarak, hareketli akışkanın basınç enerjisini; bir düşük basınç alanı yaratıp, hız enerjisine çevirerek; hareketli akışkanı çekip, emme akışkanının buna karışmasını sağlar ve hemen ardından bu karışmış akışkanları, hız enerjisini tekrar basınç enerjisine dönüştürerek, yeniden sıkıştıran pompa benzeri bir alettir.Hareketli akışkan gaz veya sıvı olabilir. Emme akışkanı bir gaz, bir sıvı, bir bulamaç, toz yüklü bir gaz akışı olabilir.

İklimlendirme terimi çoğunlukla soğutma yapılarak iç mekanlardaki havanın ısı konforu sağlanması ve neminin alınması işlemlerine denir. Daha geniş bir anlamda, terim HVAC, ısıtma, soğutma ve havalandırma veya havanın durumunu iyileştirmek için dezenfeksiyon işlemleri için de kullanılır. Bir klima bir çevrimi kullanarak, çoğunlukla binalardaki ve taşıma araçlarındaki konfor için ortamdaki ısıyı çeken, bir aygıt, bir sistem veya bir mekanizmadır.

Soğutucu akışkanlar, klima sistemlerinin ve ısı pompalarının soğutma döngüsünde kullanılan ve çoğu durumda sıvıdan gaza tekrarlanan bir faz geçişine ve tekrar geri dönen maddelerdir. Sıcaklığa ve basınca bağlı olarak saf olabilir veya sıvı veya gaz fazında veya her ikisinde bulunan saf sıvıların bir karışımı olabilir. Akışkan, düşük sıcaklık ve düşük basınçta ısıyı emer ve daha sonra, genellikle hâl değişikliği ile daha yüksek sıcaklık ve basınçta ısı verir.

<span class="mw-page-title-main">Soğutma grubu</span> chiller

Soğutucu, buhar sıkıştırmalı, adsorpsiyonlu soğutma veya absorpsiyonlu soğutma çevrimleriyle sıvı soğutucudan ısıyı alan makinedir. Bu sıvı daha sonra ekipmanı soğutmak için ısı değiştiriciden veya başka proses akışından dolaştırılabilir. Soğutma, ortama verilmesi gereken veya yüksek verimlilik için ısıtma amacıyla geri kazanılması gereken atık ısı oluşturur.

Bir ısı pompası, buzdolabı veya klima sisteminin performans katsayısı veya COP, yapılan iş karşılığında sağlanan yararlı ısıtma veya soğutma oranıdır. Yüksek COP'ler düşük işletme maliyetlerine eşittir. COP genellikle, özellikle ısı pompalarında, 1'i geçer, çünkü işi sadece ısıya dönüştürmek yerine, bir ısı kaynağından ısının gerekli olduğu yere ilave ısı pompalanır. Eksiksiz sistemler için, COP hesaplamaları tüm güç tüketen yardımcı sistemlerin enerji tüketimini içermelidir. COP, çalışma koşullarına, özellikle de mutlak sıcaklığa ve ısı deposu ile sistem arasındaki bağıl sıcaklığa oldukça bağlıdır ve genellikle beklenen koşullara göre grafiklendirilir veya ortalaması alınır. Absorpsiyonlu soğutucu soğutma gruplarının performansı tipik olarak çok daha düşüktür, çünkü bunlar sıkıştırmaya dayanan ısı pompaları değildir, bunun yerine ısıyla yürütülen kimyasal reaksiyonlara dayanır.

Akışkan termodinamiğinde, ısı transfer akışkanı, bir prosesin bir tarafında soğutmaya, termal enerjinin taşınmasına ve depolanmasına ve prosesin diğer tarafında ısıtmaya aracılık ederek ısı transferinde yer alan bir gaz veya sıvıdır. Isı transfer akışkanları, ısıtma veya soğutma gerektiren sayısız uygulama ve endüstriyel proseste, genellikle kapalı bir devrede ve sürekli döngülerde kullanılır. Örneğin soğutma suyu motoru soğuturken, hidronik ısıtma sistemindeki suyu ısıtmak odadaki radyatörü ısıtır.