İçeriğe atla

Isı motoru

Termodinamikte, ısı enerjisini mekanik enerjiye çeviren sistemlere Isı Motoru denir. Bu çeviriyi maddeyi çok yüksek sıcaklıklara getirip daha sonra düşük sıcaklıklara getirerek yapar. Isınan madde jeneratörün devinimsel kısmında "iş" yaparak enerjisini jeneratöre aktarır ve soğur. Bu işlem esnasında bir miktar termal enerji "iş"e dönüşür. Dönüşüm miktarı kullanılan maddeye bağlıdır.

kullanılan madde ısı kapasitesi "0" olmayan herhangi bir madde olabilir ancak genellikle sıvı veya gazlar kullanılır.

Genellikle motorlar enerjiyi mekanik "iş"'e çevirirler. Ancak ısı motorları kendilerini bu tip motorlardan verimliliklerinin Carnot kuramı ile sınırlı olmasından dolayı ayırırlar ama bu limitleme tersine çevrilebilr. Isı motorlarının en büyük avantajı pek çok enerjinin egzotermik reaksiyonlarla(yanma reaksiyonları gibi), ışığın soğurulması ile ve sürtünmeyle kolaylıkla ısı enerjisine çevrilebilmesidir.

Isı motorları genellikle döngülerle karıştırılır.

Figure 1:Isı motoru diyagramı

Termodinamikte ısı motorları çoğu zaman "Otto döngüsü" gibi standart mühendislik döngüleri ile modellenir.

Kuramsal modeller gerçek motorlardan çalışma esnasında alınan verilerle oluşturulur. Ancak motor uygulamalarının pek azı altında yatan termodinamik döngüleriyle gerçekten uyuşur.

Genel terimlerle, ısı farkı ne kadar çok ise, teral verim o kadar fazladır. Dünya üzerinde herhangi bir ısı motorunun soğuk kısmı çevresel etkiler tarafından limitlenmiştir. yani 300 kelvinden daha düşük bir sıcaklıkta olamaz. Bu nedenle ısı motorlarının verimini arttırmaya yönelik çalışmalar genelde bu limiti esnetebilmek veya ortadan kaldırabilmek üzerine yapılmaktadır.

En çok kuramsal ısı motor verimi (hiçbir motor bu verime ulaşamamaktadır) sıcak ve soğuk kısmın sıcaklık farklarının sıcak kısmın sıcaklığına bölümü ile bulundan değerdir (sıcaklık değerleri kelvin cinsinden olmalıdır)

Güç

Isı motorları spesifik güçleri tarafından karakterize edilirler. Bu litre başına verilen Kw(beygir gücü olarak da geçebilir) güçlerine göre ayrım anlamına gelir. Ancak bu ayrım benzin kullanım verimiyle karıştırılmamalıdır. Modern yüksek performanslı bir araba 1 litre benzinden 75 kW güç elde edebilir.

Isı Motoru Örnekleri
Faz değişim döngüleri

Bu sistemlerde genellikle sıvı ve gaz kullanılır. Motor kullanılan sıvıyı gaza, kullanılan gazı sıvıya dönüştürür. bunların kisini de yapabilir.

• Rankine döngüsü

• İyileştirici döngü (regenerative cycle)

• Organik rankine döngüsü

• Buhardan sıvıya döngü

• Sıvıdan katıya döngü

• Katıdan gaza döngü

Gibi türevleri vardır.

Sadece gaz içeren döngüler

• Carnot döngüsü

• Ericsson döngüsü

• Stirling döngüsü

• İçten yanmalı motorlar

• Otto döngüsü (benzin/petrol motorları9

• Dizel döngüsü

• Atkinson döngüsü

• Joule döngüsü

• Lenoir döngüsü

• Miller döngüsü

Sadece sıvı içeren döngüler

• Malone motoru

• Rejeneratif ısı döngüsü (Heat Regenerative Cyclone)

Elektron döngüleri

• Johnson termoelektrik enerji dönüştürücüsü

• Termoelektrik (Peltier-Seebeck etkisi)

• Termoiyonik emisyon

• Termotünel soğutma

Manyetik döngüler

• Termo-manyetik motor (Nikola Tesla)

Soğutma amaçlı kullanılan döngüler (buzdolapları vs)

• Buhar sıkıştırmalı soğutma

• Stirling dondurucuları (stirling cryocoolers)

• Gaz soğurmalı soğutma

• Hava döngüsü makinesi

• Vuilleumier soğutma

• Manyetik soğutma

Verim

Isı motorlarında verim giren enerjiye göre ne kadar çıkarn enerji elde edildiğiyle hesaplanır

Burada;
Motor tarafından yapılan işin miktarıdır. Eksi olmasının sebebi motorun iş yapmasıdır.
yüksek sıcaklıktaki sistemden alınan ısı enerjisidir
düşük sıcaklıktaki sisteme verilern ısı enerjisidir.

Genel olarak ısı aktarım süreçlerinde (motor soğutucu veya ısı pompası olması önemli değil) verim "ne verdin? " "ne aldın?" oranıdır.

en çok verim için ise;

Burada;

ısı kaynağının kelvin cinsinden kesin sıcaklığı de ısının aktarıldığı "küvetin" (sink) kelvin cinsinden kesin sıcaklığıdır.

Verim için bir örnek vermemiz gerkirse

Figure 2:
Figure 3:

Bu tablolarda Carnot döngüsündeki verim farklılıkları gösterilmiştir. 1. grafikte eklenen ısı enerjisi ile verimdeki artışı göstermektedir. 2. grafikte ise ısı ret sıcaklığındaki bir artış ile verimin nasıl değiştiği gösterilmektedir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Termodinamik</span> enerji bilimi

Termodinamik; ısı, iş, sıcaklık ve enerji arasındaki ilişki ile ilgilenen bilim dalıdır. Basit bir ifadeyle termodinamik, enerjinin bir yerden başka bir yere ve bir biçimden başka bir biçime transferi ile ilgilenir. Bu süreçteki anahtar kavram, ısının, belirli bir mekanik işe denk gelen bir enerji biçimi olmasıdır.

<span class="mw-page-title-main">Isı transferi</span> Isıl enerjinin fiziksel sistemlerde taşınımı

Isı aktarımı, sıcaklıkları farklı iki veya daha fazla nesne arasında iletim, taşınım ya da ışınım yoluyla gerçekleşen enerji aktarımının incelenmesidir. Bu transferin matematiksel olarak modellenmesi ısı aktarımı dersinin temel konusunu oluşturur. Termodinamik, akışkanlar mekaniği ve malzeme ile ilişkilidir.

<span class="mw-page-title-main">Carnot çevrimi</span>

Carnot çevrimi, Sadi Carnot tarafından 1820'lerde ortaya konmuş özel bir termodinamik çevrimdir ve Benoît Paul Émile Clapeyron tarafından 1830 ve 1840'lı yıllarda geliştirilmiştir.

<span class="mw-page-title-main">Termodinamik çevrim</span>

Termodinamik çevrim, bir veya daha çok hal değişimi gerçekleştiren, veya enerji üreterek veya enerjiyi transfer ederek ilk haline dönen bir çalışma akışkanı içeren çevrimlerdir. Tabloda termodinamik çevrimlerin listesi verilmiştir.

<span class="mw-page-title-main">Stirling motoru</span>

Stirling motoru, sıcak hava motoru olarak da bilinir. Dıştan yanmalı motorlu bir ısı makinesi tipidir. Isı değişimi prosesi, ısının mekanik harekete dönüşümünün ideal verime yakın olmasına izin verir.

Benzinli motorda, yanma sabit hacimde gerçekleşir, dizel motorda ise yanma sabit basınçta gerçekleşir. Karma çevrimde ise günümüz modern dizel motorlarında olduğu gibi, yanmanın ilk aşaması sabit hacime yakın, son aşaması ise sabit basınca yakın gerçekleşmektedir. Bu yüzden ısının bir miktarının sabit hacimde, geri kalan kısmının da sabit basınçta sisteme verildiği bu çevrime karma çevrim denir.

<span class="mw-page-title-main">Isı sığası</span> bir maddenin sıcaklığını 1 °C değiştirmek için gerekli olan ısı miktarıdır

Isı sığası veya ısı kapasitesi, bir maddenin sıcaklığını 1 °C değiştirmek için gerekli olan ısı miktarıdır. Başka bir ifade ile bir cismin ısısının sıcaklığına göre türevidir. Cismin kütlesi ile öz ısısının çarpımına eşittir (m.c).

<span class="mw-page-title-main">Isıl verim</span>

Isıl verim, içten yanmalı motor, ısı makinası, ısı pompası gibi termodinamik çevrim gerçekleştiren makinelerde boyutsuz bir ısıl başarım ölçüsüdür. Bu makinelerde sisteme ısı verilir ve genellikle mekanik olmak üzere başka tip bir enerji biçimi ya da ısı elde edilmek istenir. Genel anlamda ısıl verim:

Termodinamiğin(Isıldevinimin) ikinci yasası, izole sistemlerin entropisinin asla azalamayacağını belirtir. Bunun sebebini izole sistemlerin termodinamik dengeden spontane olarak oluşmasıyla açıklar. Buna benzer olarak sürekli çalışan makinelerin ikinci kanunu imkânsızdır.

<span class="mw-page-title-main">Gibbs serbest enerjisi</span>

Gibbs serbest enerjisi entalpiden, entropi ve mutlak sıcaklığın çarpımının çıkarılmasıyla elde edilen termodinamik bir değişkendir. Genel olarak kimyasal bir reaksiyonun enerji potansiyelinin işe dönüştürülebilmesiyle ilgilidir.

Termal enerji, ortam veya sistem sıcaklığı sonucunda ortamdaki veya sistemdeki bir cismin veya maddenin potansiyel ve kinetik enerjileri toplamını ifade eden bir enerji biçimidir. Sistemde sıcaklık olmadığı müddetçe bu niceliği tanımlamak zor ve hatta anlamsız olabilir. Bu durumda herhangi bir termal iş söz konusu değildir.

Ekserji verimi, termodinamiğin ikinci kanununa göre verimliliği hesaplar. Bir tesisin, mekanizmanın veya sistemin oluşturduğu ve faydalı iş için gereken toplam ekserjilerin, yine aynı sistemdeki kütle akışı veya enerji kaynaklarının potansiyel ekserjilerinin toplamına oranını ifade eder.

<span class="mw-page-title-main">Termodinamiğin üçüncü kanunu</span>

Termodinamik'in üçüncü yasası bazen ‘mutlak sıfır sıcaklığında dengede olan sistemlerin özelliklerine ilişkin’ olarak şu şekilde tanımlanır:

Isıl ışınım maddedeki yüklü parçacıkların ısıl hareketiyle meydana gelmiş elektromanyetik ışınımdır. Isısı mutlak sıfırdan büyük olan her madde ısıl ışınım yayar. Isısı mutlak sıfırdan büyük olan maddelerde atomlar arası çarpışmalar, atomların ya da moleküllerin kinetik enerjisinde değişime neden olur.

Atmosferik termodinamik, dünya üzerindeki ısının, iklim veya hava koşulları dahilinde işe dönüşmesini inceleyen alandır. Klasik termodinamikin kurallarını takip eden atmosferik termodinamik nemli hava,bulutların oluşumu, astronomik conveksiyon, sınır tabakası meteorolojisi,ve atmosferdeki dikey durağanlık gibi fenomenlerin üzerinde çalışır. Atmosferik termodinamik şemalarfırtına tahmin araçlarının geliştirilmesinde kullanılır. Atmosferik termodinamik Sayısal hava modellerinde bulut mikrofizik ve konveksiyon (iklim) parametrizasyonlara için bir temel teşkil eder ve pek çok iklimi göz önünde tutmak için kullanılır buna konvektif –denge iklimi modeli de dahil.

Fizikte, foton gazı, fotonların gaz benzeri birikmesidir ki hidrojen ve neon gibi sıradan gazlarla basınç, sıcaklık, entropi gibi benzer özelliklere sahiptir. Foton gazının dengedeki en yaygın örneği siyah cisim ışımasıdır.

Buharlaşma entropisi sıvının entropisinin buharlaşma sebebiyle olan artışıdır. Her zaman pozitif olmakla beraber, bu artışın sebebi düzensizliğin sıvı halden görece daha fazla hacim kaplayan gaz hale geçerken artıyor olmasıdır. standart basınçta Po = 1 bar, buharlaşma enerjisi DSoVap şeklinde gösterilir ve birimi J mol−1 K−1.

Bir ısı pompası, buzdolabı veya klima sisteminin performans katsayısı veya COP, yapılan iş karşılığında sağlanan yararlı ısıtma veya soğutma oranıdır. Yüksek COP'ler düşük işletme maliyetlerine eşittir. COP genellikle, özellikle ısı pompalarında, 1'i geçer, çünkü işi sadece ısıya dönüştürmek yerine, bir ısı kaynağından ısının gerekli olduğu yere ilave ısı pompalanır. Eksiksiz sistemler için, COP hesaplamaları tüm güç tüketen yardımcı sistemlerin enerji tüketimini içermelidir. COP, çalışma koşullarına, özellikle de mutlak sıcaklığa ve ısı deposu ile sistem arasındaki bağıl sıcaklığa oldukça bağlıdır ve genellikle beklenen koşullara göre grafiklendirilir veya ortalaması alınır. Absorpsiyonlu soğutucu soğutma gruplarının performansı tipik olarak çok daha düşüktür, çünkü bunlar sıkıştırmaya dayanan ısı pompaları değildir, bunun yerine ısıyla yürütülen kimyasal reaksiyonlara dayanır.

1824 yılında Nicolas Léonard Sadi Carnot tarafından geliştirilen Carnot teoremi, aynı zamanda Carnot kuralı olarak da adlandırılır, termodinamik sistemlerde elde edilebilir maksimum verimin sınırlarını belirleyen bir ilkedir.