İçeriğe atla

Iraksak seri

Matematikte ıraksak seri yakınsak olmayan bir sonsuz seridir. Bu, serinin kısmi toplamlarının herhangi bir limit değeri olmadığı anlamına gelmektedir.

Bir seri yakınsıyorsa bu serinin terimleri sıfıra yaklaşmalıdır. Bu nedenle, en az bir terimi sıfıra yaklaşmayan seriler ıraksaktır. Ne var ki, terimleri sıfıra yaklaşan tüm seriler yakınsak değillerdir. Harmonik seri bu duruma örnek olarak gösterilebilir.

Harmonik serinin ıraksak olduğu Orta Çağ matematikçisi Nicole Oresme tarafından kanıtlanmıştır.

Özelleşmiş matematiksel yöntemler, kısmi toplamlar serisi ıraksayan belli serilere değerler atamaktadır. Toplam yöntemi, serinin kısmi toplamlar kümesinden değerlere tanımlı bir parçalı işlevdir. Örneğin, Cesàro toplamı Grandi ıraksak serisine 1/2 değerini atamaktadır. Kısmi toplamların aritmetik ortalamasına dayanan Cesàro toplamı ortalayıcı bir yöntemdir. Diğer yöntemler ise serinin çözümlemeli sürekliliğini göz önüne almaktadır. Fizik bu tür farklı toplam yöntemlerinin en sık kullanıldığı bilim dalıdır.

Iraksak seri toplam yöntemleri

Bir M toplam yöntemi tüm yakınsak serilerin limit değerleriyle koşutluk gösteriyorsa düzenlidir. Bu sonuç Abel Teoremi olarak adlandırılır. Alfred Tauber tarafından bulunan ve bu teoreme kısmen karşıt sonuçlar üreten Tauber teoremleri ise daha çok ilgi çekmektedir. Buradaki kısmen karşıt terimi, M'nin Σ serisini toplayabildiğinde Σ'nın yakınsak olması gerektiğini belirtmektedir.

Iraksak bir serinin toplamına değer atayabilen yöntemler doğrusaldır. Bu sonuç, yöntemin sınırlı kısmi toplamlara sahip olan serileri toplayabilecek biçimde geliştirilebilmesini öngören Hahn-Banach teoreminden çıkarılmaktadır. Bu olgu uygulamada çok yararlı değildir. Bunun nedeni, birbirleriyle tutarsız yöntemlerin çokluğu ve bu yöntemlerin gerçekte var olduklarını kanıtlamanın seçme beliti ya da Zorn önermesi gibi yöntemler kullanmayı gerektirmesidir.

Iraksak serilerin matematiksel çözümlemedeki kullanım alanı Abel toplamı, Cesàro toplamı ve Borel toplamı gibi somut ve doğal yöntemler ve bunlar arasındaki ilişkilerdir. Wiener'in Tauber teoremi bu alanda bir milat olmuş ve Fourier çözümlemesindeki Banach cebiri yöntemleri üzerinde beklenmeyen bazı düzeltmeler yapmıştır.

Iraksak seri toplam yöntemleri ekstrapolasyon ve seri dönüşümü yöntemleriyle de ilintilidir. Padé yaklaşıkları, Levin seri dönüşümleri ve nicem mekaniğindeki düzensizlik teoremini düzeltme yöntemlerine ilişkin düzeye bağlı eşlemeler bu yöntemlere örnek olarak gösterilebilir.

Toplam yöntemlerinin özellikleri

Toplam yöntemleri genellikle serinin kısmi toplamlar kümesine odaklanmaktadır. Bu seri her ne kadar yakınsamıyorsa da, serinin ilk terimlerinin ortalaması alınarak limit hesaplaması gerekliliği ortadan kaldırılabilmektedir. a = a0 + a1 + a2 + ... ifadesini hesaplayabilmek için öncelikle s serisi bulunmalıdır. Bu seri, s0 = a0 ve sn+1 = sn + an eşitliklerini sağlar. Yakınsak seriler için s, a limitine yaklaşmaktadır. Toplam yöntemi, kısmi toplamlar serisinden değerlere tanımlı bir işlev olarak görülebilir. A, bir seri kümesine değer atayabilen bir toplam yöntemi ise bu, karşılık gelen tüm serilere değer atayabilen bir seri toplam yöntemine dönüştürülebilir. Bu yöntemlerin belirli limit ve toplam değerlerine karşılık gelebilmeleri için sahip olmaları gereken bazı özellikler bulunmaktadır.

  1. Düzenlilik. s serisi x'e yakınsarken A(s) = x koşulu sağlanıyorsa bu toplam yöntemi düzenlidir. Buna karşılık gelen seri toplam yöntemi de AΣ(a) = x sonucuna ulaşmaktadır.
  2. Doğrusallık. A, seri üzerinde tanımlı olduğu noktalarda doğrusal ise bu yöntem doğrusaldır. Bu, A(r + s) = A(r) + A(s) ve k bir sayı (gerçel ya da karmaşık) olmak koşuluyla A(ks) = k A(s) eşitliklerinin sağlanması anlamına gelmektedir. a serisinin an = sn+1sn terimleri s serisi üzerinde doğrusal olduklarından AΣ, seri terimleri üzerinde doğrusaldır.
  3. Kararlılık. s, s0 ile başlayan bir seriyse ve sn = sn+1s0 koşulu sağlanıyorsa A(s) ancak ve ancak A(s′)'nin tanımlı olması durumunda tanımlıdır ve A(s) = s0 + A(s′) eşitliği sağlanır. Başka bir deyişle, an = an+1 koşulu tüm n değerleri için sağlanıyorsa AΣ(a) = a0 + AΣ(a′) eşitliği elde edilir.

Üçüncü koşul daha az önem taşımaktadır. Borel toplamı gibi bazı önemli yöntemler bu koşula sahip değillerdir.

A ve B gibi iki farklı toplam yönteminde ortak olarak bulunması yeğlenen özellik tutarlılıktır. A ve B'nin değer atadığı her s serisi için A(s) = B(s) koşulu sağlanıyorsa bu yöntemler tutarlıdır. İki yöntem tutarlıysa ve bunlardan biri diğerinden daha çok sayıda seriyi toplayabiliyorsa o yöntem diğerinden güçlüdür.

Belitsel yöntemler

Düzenlilik, doğrusallık ve tutarlılık birer belit olarak tanımlandığında birçok ıraksak seriyi temel cebirsel ifade değişiklikleriyle toplamak olanaklıdır. Örneğin, r ≠ 1 olmak koşuluyla

geometrik serisi yakınsak olup olmadığına bakılmaksızın toplanabilir. Bu özelliklere sahip olan ve geometrik serilere değer atayabilen toplam yöntemleri bu seriye de değer atayabilmelidirler. Ne var ki, r'nin 1'den büyük bir gerçel sayı olması durumunda kısmi toplamlar sınır tanımaksızın artmakta ve ortalamaya dayanan yöntemler ∞ limit göstermektedirler.

Nörlund ortalamaları

pn'nin pozitif terimlerden oluşan ve p0'dan başlayan bir seri olduğu varsayılsın. Ayrıca,

koşulu da sağlanmış olsun. Bir s serisi p cinsinden ağırlıklı ortalamalar verecek biçimde düzenlenirse

n sonsuza giderken tn'nin limiti Nörlund ortalaması (Np(s)) olarak adlandırılan ortalama değere eşit olur.

Nörlund ortalaması düzenli, doğrusal ve kararlı olmasının yanı sıra iki Nörlund ortalaması tutarlıdır. Nörlund ortalamalarının en önemlileri kuşkusuz Cesàro toplamlarıdır. pk serisi

olarak tanımlandığında Cesàro toplamı Ck, Ck(s) = N(pk)(s) koşulunu sağlamaktadır. k ≥ 0 ise Cesàro toplamları Nörlund ortalamalarıdır. C0 olağan toplamayı, C1 ise olağan Cesàro toplamını göstermektedir. h > k koşulu sağlanıyorsa Ch Ck'den güçlüdür.

Abel ortalamaları

λ = {λ0, λ1, λ2, ...} sonsuza yönelen artan bir seri olsun ve λ0 ≥ 0 koşulunun sağlandığı varsayılsın.

toplamı tüm x pozitif gerçel sayıları için yakınsıyorsa Abel ortalaması Aλ

biçiminde ifade edilebilir.

Bu tür seriler genel Dirichlet serileri olarak adlandırılır. Fiziksel uygulamalarda ise ısı-öz düzenlemesi adını alırlar.

Abel ortalamaları düzenli, doğrusal ve kararlıdırlar ancak farklı λ değerleri için tutarlı değillerdir. Buna karşın, bazı özel durumlar önemli toplam yöntemleri oluşturmaktadır.

Abel toplamı

λn = n koşulu sağlandığında Abel toplamına ulaşılmaktadır.

Burada z = exp(−x) eşitliği sağlanmaktadır. Böylece, x pozitif gerçel sayılardan 0'a yaklaşırken ƒ(x)'in limiti, z 1'e aşağıdan yaklaşırken ƒ(z)'nin limitine eşit olur. Bu durumda Abel toplamı A(s)

biçiminde tanımlanır.

Abel toplamı Cesàro toplamı ile tutarlıdır ancak ondan güçlüdür. Ck(s)'nin tanımlı olduğu tüm noktalarda A(s) = Ck(s) eşitliği sağlanmaktadır.

Lindelöf toplamı

λn = n ln(n) koşulu sağlanıyorsa

eşitliğine ulaşılır.

Lindelöf toplamı (L(s)), x sıfıra giderken ƒ(x)'in limitine eşittir. Birçok uygulama alanı bulunan bu yöntem Mittag-Leffler yıldızındaki güçlü serileri toplayabilmesiyle ünlüdür.

g(z) sıfır çevresinde analitik ise ve bir Maclaurin serisine sahipse Mittag-Leffler yıldızında L(G(z)) = g(z) eşitliği sağlanır.

Ayrıca bakınız

Kaynakça

  • Arteca, G.A.; Fernández, F.M.; Castro, E.A. (1990), Large-Order Perturbation Theory and Summation Methods in Quantum Mechanics, Berlin: Springer-Verlag .
  • Baker, Jr., G. A.; Graves-Morris, P. (1996), Padé Approximants, Cambridge University Press .
  • Brezinski, C.; Zaglia, M. Redivo (1991), Extrapolation Methods. Theory and Practice, North-Holland .
  • Hardy, G. H. (1949), Divergent Series, Oxford: Clarendon Press .
  • LeGuillou, J.-C.; Zinn-Justin, J. (1990), Large-Order Behaviour of Perturbation Theory, Amsterdam: North-Holland .
  • Zakharov, A.A. (2001), "Abel summation method", Hazewinkel, Michiel (Ed.), Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104 .

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

<span class="mw-page-title-main">Laurent serisi</span>

Matematikte karmaşık bir fonksiyonun Laurent serisi bu fonksiyonun negatif dereceli terimler de içeren kuvvet serisi temsilidir. Karmaşık fonksiyonların Taylor serileri açılımının mümkün olmadığı durumlarda bu fonksiyonları açıklamak için de kullanılabilir. Laurent serisi ilk defa 1843'te Pierre Alphonse Laurent tarafından yayınlanmış ve bu matematikçinin adını almıştır. Karl Weierstrass 1841'de bu seriyi bulmuş olabilir ancak o zamanda ilk yayınlayan olamamıştır.

Matematikte Abel testi sonsuz bir serinin yakınsaklığını belirlemek için kullanılan bir yöntemdir. Bu test matematikçi Niels Abel'e ithafen bu şekilde isimlendirilmiştir. Abel testinin farklı iki çeşidi vardır – birisi gerçel sayıların serileriyle kullanılır; diğeri ise karmaşık analizdeki kuvvet serileriyle kullanılır.

Almaşık seri testi, matematikte sonsuz bir serinin yakınsaklığını göstermek için kullanılan bir yöntemdir. Gottfried Leibniz tarafından keşfedildiği için Leibniz ismiyle de atfedilir.

<span class="mw-page-title-main">1 − 2 + 3 − 4 + · · ·</span> Matematikte sonsuz bir seri

Matematikte 1 - 2 + 3 - 4 + ..., terimlerinin işaretleri sırasıyla değişen ardışık pozitif tam sayıların oluşturduğu sonsuz bir seridir. Serinin ilk m teriminin toplamı, Sigma toplama gösterimi kullanılarak şöyle ifade edilebilir:

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Harmonik seriler</span>

Harmonik seri ıraksak bir seridir, harmonik sözcüğü ise müzikten devşirilmiştir.

Matematiksel çözümlemede Cesàro toplamı bir sonsuz diziye toplam değeri atamanın farklı bir yoludur. Bir dizi A toplamına yakınsıyorsa bu dizinin Cesàro toplamı da A olur. Cesàro toplamı, yakınsamayan dizilere de değer atayabilmektedir. Ne var ki, artı sonsuz değerine yönelen bir dizi hiçbir koşulda sonlu bir toplam değerine sahip olamayacaktır.

Euler toplamı, yakınsak ve ıraksak diziler için kullanılan bir toplam yöntemidir. Bir Σan dizisinin Euler dönüşümü bir değere yakınsıyorsa bu değer Euler toplamı olarak adlandırılır.

Borel toplamı dizilerin toplamına ilişkin bir genellemedir. Bu terim, herhangi bir toplam değeri olmayan diziler için bile bir büyüklük değeri tanımlayabilmektedir.

<span class="mw-page-title-main">Geometrik seri</span> (sonsuz) geometrik dizilişin toplamı

Matematikte geometrik seri art arda gelen iki terimi arasında sabit bir oran bulunan seridir. Örneğin,

<span class="mw-page-title-main">Dirichlet eta işlevi</span>

Matematiğin analitik sayı kuramı alanında Dirichlet eta işlevi

<span class="mw-page-title-main">Kuvvet serisi</span>

Matematikte kuvvet serisi

Matematikte, bir kuvvet serisinin yakınsaklık yarıçapı negatif olmayan bir gerçel sayı veya ∞ olan bir niceliktir. Verilen bir kuvvet serisinin yakınsaklık yarıçapı serinin yakınsak olduğu bölgeyi gösterir. Bu yakınsaklık yarıçapının içinde kalan bölgede, kuvvet serisi mutlak yakınsak ve aynı zamanda tıkız yakınsaktır. Seri yakınsak ise, o zaman bu seri bir analitik fonksiyonun bu yakınsaklık yarıçapının belirlediği bölgenin içinde kalan bölgede yakınsayan bir Taylor serisidir.

Özel fonksiyonların önemli bir bölümünü oluşturan hipergeometrik fonksiyonlar matematik, fizik, mühendislik ve olasılıkta karşımıza çıkar.

Matematikte eğer bir serinin terimlerinin mutlak değerlerinin toplamı yakınsak ise bu seri mutlak yakınsak olur. Daha iyi anlatmak gerekirse, gerçek veya karmaşık bir seri olan serisinin terimlerinin mutlak değerlerinden oluşan serisi yakınsak ise bu seri mutlak yakınsaktır. Benzer şekilde eğer bir fonksiyonun has olmayan integrali,, yine bu fonksiyonun mutlak değerinin integrali olan sağlanır ise bu integral mutlak yakınsaktır.

Matematik alanında, toplam veya genel toplam olarak sonuçlanan, toplananlar ya da toplamalar diye adlandırılan bir sayı dizisinin eklenme sürecine toplam/toplama denir. Sayıların yanı sıra, fonksiyonlar, vektörler, matrisler, polinomlar ve genelde "+" işareti ile tanımlanmış işleme sahip diğer tüm matematiksel nesne türleri de toplanabilir.