İçeriğe atla

Işık yükseltici

Işık yükseltici

Işık yükseltici, ışık sinyallerini doğrudan yükselten, ilk önce elektrik sinyaline dönüştürmeye ihtiyaç duymayan bir alettir. Işık yükseltici lazer olarak da düşünülebilir fakat ışık boşluğu olmadan bu genelleme yapılmalıdır. Işık yükselticileri optik iletişiminde ve lazer fiziğinde önemli bir yere sahiptirler.

Birçok fiziksel mekanizma ışık sinyalini yükseltmek için kullanılmaktadır ve bunlar ışık yükselticilerinin en büyük türleridir. Katkılı fiber yükselticilerde ve lazerlerde, canlandırılan emisyon yükselticinin kazandığı ışıkların yükseltiminde kullanılmaktadır. Yarı iletken ışık yükselticilerinde, elektron boşluk kombinasyonları oluştuğu gözlemlenmektedir. Raman yükselticilerinde, Raman saçılmasının gelen ışığının fononlarla, foton üretimini sağlamaktadır. Bunlar gelen fononlarla uyumlu bir haldedirler. Parametric yükselticiler de parametrik yükseltmede kullanılmaktadır.

Lazer yükselticiler

Neredeyse bütün lazerler ışık için kazanması gereken dalga boyundaki malzemeleri aynı kendisinin kazandığı gibi pompalamaktadır. Bu yükselticiler genel olarak yüksek güçlü lazer sistemlerini kullanmaktadır. Özel tipleri, örnek olarak tekrar yenilenebilen yükselticiler ve atımlı yükselticiler çok kısa atımları yükseltmek için kullanılmaktadır.

Katkılı fiber yükseltici

Basit bir katkılı fiber yükseltici için oluşturulmuş diyagram.

Katkılı fiber yükselticiler (DFA) ışık yükselticilerdir ve fiber optiklere katkı sağlamak için tıpkı optik sinyallerine ortam sağlandığı gibi kullanılmaktadır. Bunlar fiber lazerlerle daha da yakındır. Sinyalleri yükseltilebilir ve pompa lazerleri katkılı fiberlerein içinde çoğaltılabilirler. Ayrıca sinyalleri katkı sağlayan iyonlarla etkileşim haline geçerek yükselebilirler. En yaygın örneklerinden birisi Erbiyum katkılı fiber yükselticidir ve silika fiber erbiyum iyonlarıyla katkılaştırılmıştır. Buradaki ama. berim olarak lazerlerle birlikte 980 ila 1480 nm dalga boylarında pompalamak ve 1550 nm bölgede kazandığını göstermektir. Erbiyum katkılı frekans yönlendirici (EDWA) optik yükseltici olarak optik sinyallerinin frekanslarını hızlandırmaktadır.

Yükselme, fotonların emisyonunu canlandırarak katkı maddesi olan iyonlarla katkılı fiberde gerçekleştirilir. Pompa lazerleri iyonları uyararak yüksek enerjiye zayıf oldukları yer neresi ise oradan canlandırılarak emisyon sayesinde düşük enerji seviyesindeki dalgaboylarına indirilmiştir. Uyarılmış iyonlar kendiliğinden azalmaktadır veya radyaktif olmayan süreçlerde fononlarla ışık matriksinin içerdiği bölgelerde bulunmaktadır. Bu son iki düşüş mekanizması canlandırılmış emisyonla beraber rekabet içindedirler ve ışık yükseltiminin verimini düşürmektedirler.

Işık yükselticinin yükseltme penceresi, optik dalga boylarının menzilindedir ve bu menzil yükselticinin kullanılabilir bir kazancı için üretilmiştir. Yükseltme penceresi katkı sağlayan iyonların spektroskobik özellikleri tarafından belirlenmişlerdir ve fiber optiğin cam yapısı, pompa lazerinin dalgaboyu ve gücüdür.

İzole iyonların elektronik geçişleri çok iyi bir şekilde tanımlanmış olsa da, enerji seviyelerinin genişliği iyonların fiber optik camlarının içinde birleşmiş olduklarında ortaya çıkarlar ve böylece yükseltme penceresi de genişletilmiş olur. Bu genişleme hem homojen olarak (tüm iyonlar aynı genişlik spektrumunda yer alır.) hem de heterojen (farklı iyonlar farklı camlarda farklı spektrum özellikleri gösterirler.) olarak gerçekleşirler.

Homojen genişleme camdaki fononların birbirleri arasında etkileşimleri ile oluşmaktadır ve bu sırada heterojen genişleme ise camdaki farklı iyonlar arasındaki farklılıklardan oluşmaktadır. Farklı bölgeler iyonlara farklı bölgesel elektrik alanlara yerleştirirler ve bu da enerji seviyelerini Stark efekti sayesinde değiştirmelerine yardımcı olur. Buna ek olarak, Stark efekti aynı zamanda dejenere enerji seviyelerini değiştirmektedir ve bunların açısal momentumları aynı kalmaktadır. (kuantum sayısı J ile özelleştirilmiştir.) Böylece, örnek olarak, erbiyum iyonu (Er+3) başlangıç seviyesi olarak 15/2=J'ye sahiptir ve elektrik alanın varlığında J sayısı 8 alt seviyeye ayrılmaktadır ve bunların enerjileri birbirinden çok küçük farklılıklara sahiptirler. İlk uyarılan seviye J=13/2'dir ve bu yüzden Stark kopyaları 7 farklı alt katmana sahiptirler.

J=13/2'den olan transferler uyarılma seviyeleri olan J=15/2'ye kadar 1.5 mikrometre dalga boyunda sorumludurlar. EDFA'nın kazandığı spektrum farklı zirve noktalarına sahiptir ve yukarıdaki belirtilen genişleme mekanizması ile nasıl bozulduğu gösterilmiştir. Net sonuç ise çok geniş olarak ölçülmüştür. (30 nm silakada). Geniş bant kalınlığı fiber yükselticilerde kullanılabilir bir dalga boyu ayrımı çoğaltılmasını iletişim sistemlerinde tek bir yükseltici olarak tüm taşınan sinyalleri yükseltmek için fiberlerde kullanır ve bunların dalgaboyları pencerede düşmüştür.

Temel prensipler

Yüksek güce sahip ışın demeti giriş sinyaliyle dalgaboyu seçici kullanarak karışmıştır (WSC). Giriş sinyali ve uyarma ışığı önemli derecede farklı dalga boylarına sahiptirler. Karışan ışık farklı fiber bölümlerine erbiyum katkılı iyonları çekirdeğinde taşıyarak karışmıştır. Bu yüksek güçlü ışın demeti erbiyum iyonlarını yüksek enerji seviyelerine uyarırlar. Sinyale ait fotonlar farklı dalga boylarında pompa ışığından ışıkla birleşerek erbiyum atomalarını uyarırlar, erbiyum atomları enerjilerinin bir kısmını sinyale verirler ve düşük enerji seviyelerine geri dönerler. Buradaki önemli noktaerbiyum enerjisini ek fotonlara aynı fazda ve yönde sinyal yükselticisi olarak verirler. Bu şekilde sinyal yükselitilir ve sadece onun hareket ettiği yönde yolculuk eder. Bu alışılmış bir durumdur- atomlar " lazer ışığı kullanarak" enerjilerini aynı yönde ve fazda gelen ışık gibi bırakırlar. Böylece tüm ek sinyal güçleri aynı fiber modunda gelen sinyal gibi rehberlik edilirler. Sık sık karşılaşılan bir durum ise çıkış kısmına eklenen fiberden gelen yansımaları önlemek amacıyla isolatördür. Bu yansımalar yükseltici operasyonunu bozarak ve bazı ekstrem koşullarda yükselticiyi lazer haline getirmeyi sağlar. Erbiyum katkılı yükseltici ise yüksek kazançlı bir yükselticidir.

DFA'larda gürültünün temel kaynağı Amplified Spontaneous Emission (ASE) olarak tanımlandırılan, yükselticiyle neredeyse aynı spektrum kazancına sahip olan bir tür spektrumdur. Gürültü figürü ideal DFA'da 3 desibeldir ve buna karşın pratik yükselticilerde gürültü figürü 6 ila 8 desibel arasındadır. Canlandırılan emisyon sayesinde olan azalma ile, elektronlar yüksek enerji seviyelerine aynı zamanda kendiliğinden gerçekleşen emisyonla düşedebilirler ve bu durum tamamen kendiliğinden oluşur. Ayrıca bağlı olduğu şeyler ise camın yapısı ve döndüğü seviyedir. Fotonlar kendiliğinden tüm yönlerde dışarı yayılırlar fakat bunların oranları birçok sayısız fiber aralıklarıyla aynı yönde dışarı verilmişlerdir. Bu fotonlar diğer katkı sağlayan iyonlarla etkileşim kurmaları amacıyla yakalanmaktadır ve canlandırılan emisyon yükseltilmektedir. İlk kendiliğinden gerçekleşen emisyon bu şekilde aynı sinyallerde görüldüğü gibi eş yönlü olarak yükseltilmiştir ve bu yüzden Amplified Spontaneous Emission adı verilmiştir. ASE yükseltici tarafından hem ileri hem de geri yönlerde dışarıya verilmiştir. Fakat, sadece ileri yönde olan ASE sistem performansı açısından ileri yönlüdür ve bu sistem performansını tekrar derecelendiren alıcıyla birlikte gürültüye sahiptir. Karşı yayılım ASE'nin yapabildiği fakat derecesini düşürdüğü yükselticinin performansı ASE azaltıldığından beri ters yönde hareket etmektedir ve bu yüzden yükselticinin kazancı azalmaktadır.

Soğurma kazancı

DFA'daki kazanç katkı sağlayan iyonların çokluğundan dolayı sağlanmaktadır. DFA'nın ters seviyesi, öncelikli olarak, pompa dalga boyundan ve yükseltici dalga boyundan aldığı güç ile sağlanmaktadır. Sinyal gücü arttıkça veya pompalama gücü azaldıkça, ters seviye gittikçe azalacak ve bu yüzden yükselticinin sahip olduğu kazanç da azalacaktır. Bu etki soğurma kazancı olarak bilinmektedir- sinyal seviyesi arttıkça, yükseltici soğurması da artacak ve daha fazla çıkış gücü üretemeyecek hale gelecektir. Bu yüzden de kazancı azalacaktır. Soğurma aynı zamanda basınç olarak da bilinmektedir. Optimum gürültüyü performansını DFA'larda sağlamak amacıyla önemli bir miktarda basınç kazanımı sağlanmaktadır (ortalama 10 dB), bu kendiliğinden emisyon hızını düşürdüğünden beri aynı zamanda ASE'yi de düşürmektedir. DFA sistemini yürütmenin bir diğer avantajı ise soğurma kazancı sağlarken o bölgelerde küçük dalgalanmaların gelen sinyal gücüne bağlı olarak çıkış yükseltme sinyalini arttırmasıdır. Gelen sinyal gücü daha büyük bir kazanç sağlarken geniş gelen güç daha az bir kazanç sağlamaktadır. Atımın yönlendiren kenarı yükseldiğinde, maddenin doyma enerjisine ulaşana kadar bu işlemi gerçekleştirecektir. Bazı durumlarda, atımın genişliği de düşürülmektedir.

Heterojen genişletme etkisi

Çizgi kalınlığının heterojen miktarından dolayı katkı sağlayan iyonların genişlemesi, kazanılan spektrumun heterojen bileşenlerle ve kazanılan doymanın gerçekleşmesi, küçük bir içerikte, heterojen olarak gerçekleşmektedir. Bu etki aynı zamanda hayali deli yakımı gibi adlandırılır çünkü yüksek güç sinyali bir dalga boyundan sinyale yakın olan ve heterojen olarak doyurulan genişletilmiş iyonlarca sağlanmaktadır. Hayali boşluklar genişliğe bağlı olarak çeşitlenmektedirler ve aynı zamanda fiber optiğin karakteristik özelliklerine de bağlıdır. Fakat, gene olarak 1 nanometreden daha az kısa dalga boylarında ve C bandlarının sonunda, birkaç nanometre uzunluğundaki dalgaboyları C bandının sonunda sonlanmaktadır. Deliklerin derinlğği çok küçük olmasına rağmen, bazı pratik yollarda gözlemlemesi oldukça zordur.

Kutuplaştırma etkisi

DFA'nın kutuplaştırması gerekli olarak yükselticiden bağımsız olmasına rağmen, küçük bir miktardaki katkı sağlayan iyonlar isteklerine göre uygun kutuplaşma koşullarında birbirleriyle etkileşim halindedirler ve gelen sinyalin bağlı olduğu kutuplaşmaya bağlıdır (genellikle 0.5 dB'den küçüktür). Bu durum Polarization Dependent Gain (PDG) olarak adlandırılmaktadır. İyonların soğurma ve emme bölgeleri elips şeklinde modellenerekten büyük bir eksen etrafında sıralanarak sıradan olarak tüm yönlerde farklı cam bölgelerinde gerçekleştirilmektedirler. Yerleşmenin rastgele olarak dağıtılması elipslerde ve camlarda makroskopik olarak izotropik maddeler oluşturmaktadır fakat güçlü pompa lazerleri anizotropic dağılımı yüklemektedir ve bu olay seçici uyarma sayesinde iyonları daha sıralı bir optik alan vektörüne pompalar. Ayrıca, bu uyarılmış iyonlar sinyal alanlarıyla birlikte uyarılarak daha fazla canlandırılmış emisyon üretmektedirler. Kazançtaki değişim bu şekilde kutuplaşmanın sıralanması ile ilgili olarak pompaya ve lazere bağlıdır. Örnek olarak, iki lazer aynı katkı sağlayan iyonların alt kümesinde bulunsun ya da bulunmasın gerçekleşmesidir. İdeal katkılı fiber çift kırılmaya uğramadan, PDG'yi uygunsuz bir şekilde genişletmektedir. Neyse ki, fiber optiklerde çift kırılımın az bir miktarı her zaman bulunmaktadır ve ayrıca, hızlı ve yavaş eksenler rastgele fiber boylarında değişkenlik göstereceklerdir. Genel DFA onlarca metre uzunluğunda değişkenlik göstermektedir ve her zaman tekdüzeliğini korumak için çift kırılım eksenini göstermektedir. Bu iki birleşmiş etkiler (transfer fiberlerine kutuplaştırma modu için dağıtım verenler) benzer sinyal kutuplaşmasında düzensizlik göstermektedirler ve fiberdeki pompa lazerleri boyunca göstermektedir. Böylece, PDG'nin ortalamasından dışarıya çıkmaya eğimlidirler. Sonuç ise PDG'nin tek bir yükselticide zorlukla gözlenmesidir. (fakat art arda bağlanmış yükselticilerin bağlı olması gözle görülür bir etkidir.)

Erbiyum katkılı fiber optik yükselticiler

Erbiyum katkılı fiber yükseltici (EDFA) en çok yaygın olarak kullanılan fiber yükselticidir ve yükseltme penceresi, silika katkılı fiber optiğin üçüncü transfer penceresiyle çakışmaktadır. İki bantta üçüncü transfer penceresinde geliştirilmiştir-the Conventional veya C bandı. 1525 ila 1565 nm'den veya L bandında ortalama 1570 ila 1610 nm dalga boyları arasında yer almaktadır. Bu bantların her ikisi de EFDA tarafından yükseltilmektedirler fakat farklı iki yükseltici kullanmak normal bir durumdur, her biri farklı birer bantta özelleştirilmişlerdir. C ve L bantları arasındaki temel farklılık L bandında uzun ömürlü katkılı fiber yükseltici kullanılmasıdır. Uzun boylu fiber düşük seviyeli dönüşümü kullanır ve bu yüzden uzun dalga boylarını sonuç olarak vermektedir ve bu sırada kullanılabilir bir miktarda kazanç da sağlamaktadır. (Erbiyumun silikadaki band yapısından dolayı) EDFA'lar genel olarak iki pompalama bandı kullanırlar ve bunlar 980 nm ve 1480 nm'dir. 980 nm bandı yüksek soğurma alanına sahiptir ve genel olarak düşük gürültülü performans gerektirmektedir. Soğurma bandı diğerine oranla daha dardır ve bu yüzden dalgaboyunu sabitleyici lazer kaynakları genel olarak ihtiyaç sebebidir. 1480 nm band düşüktür fakat daha geniştir, soğurma alanı büyüktür ve genel olarak yüksek güç yükseltiminde kullanılmaktadır. 980 nm ve 1480 nm kombinasyonunda pompalama genellikle yükselticiler tarafından kolaylaştırılmaktadır. Fiber optik yükselticiler H.J.Shaw ve Michel Digonnet tarafından Stanford Üniversitesinde, Kaliforniya'da 1980'li yılların başında icat edilmişlerdir. EDFA ilk olarak birkaç yıl sonra David N. Payne, R. Mears, I.M Jauncey and L. Reekie'in de aralarında bulunduğu bir grup tarafından Southampton Üniversitesinde AT&T Bell Laboratuvarlarında ortaklaşa bir çalışma sonucu E. Desurvire, P. Becker ve J. Simpson ve Italian Company Pirelli katılımlarıyla gerçekleştirilmiştir. Çift yollu ışık yükseltici Dense Wave Division Multiplexing (DWDM) sisteminin kullanımını sağlamaktadır ve bu sistem Stephan B. Alexandar tarafından Cienna Corporation'da icat edilmiştir.

Diğer dalga boyları için katkılı fiber yükselticiler

Tulyum katkılı fiber yükselticiler S bandında (1450-1490 nm) kullanılmışlardır ve Praseodymium katkılı fiber yükselticiler 1300 nm bölgesinde kullanılmışlardır. Buna rağmen, birçok bölgede herhangi bir önemli reklamsal kullanım bu zamana kadar gözlemlenmemiştir ve bu yükselticilerin birçoğu herhangi bir yeniliğin içerisinde yer almamışlardır aynı EDFA'da da görüldüğü gibi.Buna rağmen, Öterbiyum katkılı fiber lazerler ve yükselticiler 1 mikrometre civarındaki dalga boyunda çalışmaktadır ve birçok uygulamaları malzemelerin endüstriyel sürecinde bulunmaktadır aynı bu cihazların ekstrem koşullardaki yüksek çıkış güçlerinde olduğu gibi (onlarca kilowatt).

Fotovoltaik güç üretimi yenilenemeyen yakıtların tüketimini azaltmaktadır. Hibrit sistemler en çok adalarda bulunmaktadır. Almanya’daki Pellworm adası ve Yunanistan’daki Kythnos adasın bunun önemli örneklerindendir (ikisi de rüzgar enerjisi ile bilinmektedirler.). Kythnos dizel tüketimini %11.2 oranına indirmiştir. 2015 yılında, yedi ülkenin katılımıyla gerçekleşen ve küçük şebekelerle ve izole şebekelerle hibritleşme tarafından üretim maliyeti düşürülecektir. Buna rağmen, hibritler için finansal rakamlar çok önemlidirler ve geniş alanda güç üretilen yerin mülkiyet yapısına bağlıdır. Devlete ait yapılar için maliyet azatlımı önemliyken, bunun yanı sıra halka açık olmayanlar için ekonomik faydaları da önemli bir ölçüde araştırılmaktadır. Bağımsız güç üreticileri buna örnektir. Fotovoltaik etki limitinin son zamanlardaki araştırmalara göre PV+CHP gibrit sistemine sahip ağda Amerika’da yayılması görülmektedir. Güneş akışının geçici dağılımında, elektriksel ve ısısal gereksinimlerin yalnızca Amerika için analiz edilip fotovoltaiklerle beraber ek olarak fotovoltaik yayılımını geleneksel elektrik sistemiyle nasıl mümkün olabileceğini göstermişlerdir. Bu teori birçok simulasyonlarla her saniyeye göre güneş akış verisinin gerekli batarya yedeklemesi için ve hibrit sistemlerin ucuz batarya sistemlerine oranla mümkün olabileceğini göstermektedir.

Değişik türde yenilenebilir enerji kaynakları sayesinde, depolama güç üretimini ne zaman uygun olursa üretmesine yetki vermiştir ve tüketiminin de ne zaman olursa tüketilmesi gerektiğini söylemektedir. Şebeke operatöründe iki değişken elektriği gerekli olduğu zamanlar için depo etmektedir veya nerede ihtiyaç varsa oraya transfer etmektedir. Bu durumların ikisi de sonuç verememektedir, 30kWp üstünde otomatik olarak kendilerini kapatmaktadır ve bunun yanı sıra tüm redresörlerin gerilim düzenlemeleri koruma halindedir. Ayrıca, yük yeterli miktarda değil ise güç sağlamasını durdurmaktadır. Şebeke operatörleri, sistemlerden fazla üretilenleri kısma opsiyonuna sahiptirler ve bunun yanı sıra rüzgar enerjisi, güneş enerjisinden daha yaygın olarak kullanılmaktadır. Sonuç olarak önemli bir miktarda gelir kaybı yaşanmaktadır. Üç fazlı redresörler iş esnasında kullanılmak üzere üretilen reaktif gücü tedarik etmede eşsiz bir imkâna sahiptirler. Fotovoltaik sistemler arızaları tespit edip görüntülemektedirler ve operasyonlarını uygun hale getirmektedirler. Donanımların verimine ve donanımların doğasına dayanaraktan birçok fotovoltaik görüntüleme stratejileri bulunmaktadır. Görüntüleme iş alanında veya uzaktan gerçekteştirilebilmektedir. Bu sadece üretimi ölçebilir ve tüm verileri redresörlerden geri alabilir. Ayrıca yine tüm verileri iletişim ekipmanlarından da geri alma imkânına sahiptir. Görüntüleme cihazları, kendilerini denetime bağlamaktadır veya ekstradan özellikleri de sunmaktadır. Bireysel redresörler ve batarya şarj kontrolleri görüntülemeyi, üreticinin özel yazılımı ve tutanaklarını kullanarak gerçekleştirmektedirler. Redresörün enerji ölçümü denge bakımından kısıtlanabilir ve ölçme amaçlarından sağlanan gelire pek uygun olmayabilir. Üçüncü nesil veri kazanın sistemi çoklu redresörleri görüntüleyebilir ve bu esnada üreticinin tutanakları sayesinde redresör kullanır. Ayrıca buna ek olarak, havayla alakalı sistemlerden bilgi de sağlamaktadır. Bağımsız akıllı ölçüm cihazları fotovoltaik tertibat sisteminden üretilen toplam enerjiyi ölçmektedirler.

Alt bileşenleri

Takip cihazları fiyat ve savunma eklemektedir, bu yüzden fotovoltaik tertibat için eğimli ve güneş ışınları için ortalama Kuzey yarım kürenin güneyinden dolayı veya Güney yarım kürenin kuzeyinden dolayı çok bilindik özelliğe sahiptir. Eğim açısı, dikey olarak, her mevsim değişmektedir fakat eğer sabit olsaydı, elektriksel talebin en üst seviyesinde uygun bir verim tek başına idare edilen bu sisteme sağlanabilirdi. Uygun modül eğim açısı tanımlamak amacıyla maksimum yıllık enerji verimi için gerekli bir koşul değildir. Fotovoltaik sistemin uygun hale getirilmesi için özel çevre koşulları güneşin akması, kirlenmesi, kar kaybı için karmaşık bir hale gelebilir ve bunlar birer etken olarak göz önüne alınabilir. Verimli modül ömrü gene olarak 25 yıl veya daha fazladır. Fotovoltaik güneş yeniliklerinde gerçekleşen gelişmeler için yapılan geri ödeme periyotu büyük ölçüde çeşitlilik göstermektedir ve genel olarak yatırma geri dönüşün hesaplanmasından daha az kullanışlıdır. Bu genel olarak hesaplandığı sırada 10 ila 20 yıl arasında, finansal olarak geri ödeme periyodu teşvik tedbirleri ile birlikte daha kısa olacaktır. Bireysel güneş pilinin düşük geriliminden dolayı (genellikle 0.5V), birkaç piller seri olarak baplanmışlardır. Tabaka hali koruyucu hava koşullarına karşı dayanıklı kılıfla kaplanmış bir haldedir, böylece fotovoltaik modül veya güneş paneli oluşturmaktadır. Modüller daha sonra bir arada fotovoltaik tertibatı sağlamak için dizilmektedirler.

Kaynakça

  • Beckers, J.M. (1993). "Adaptive Optics for Astronomy: Principles, Performance, and Applications". Annual Review of Astronomy and Astrophysics 31 (1): 13–62. Bibcode:1993ARA&A..31...13B. doi:10.1146/annurev.aa.31.090193.000305
  • Booth, Martin J (15 Aralık 2007). "Adaptive optics in microscopy" (PDF). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365 (1861): 2829–2843. Bibcode:2007RSPTA.365.2829B
  • Booth, Martin J.; Schwertner, Michael; Wilson, Tony; Nakano, Masaharu; Kawata, Yoshimasa; Nakabayashi, Masahito; Miyata, Sou (1 Ocak 2006). "Predictive aberration correction for multilayer optical data storage" (PDF). Applied Physics Letters 88 (3): 031109. Bibcode:2006ApPhL..88c1109B. doi:10.1063/1.2166684. Erişim tarihi
  1. Roorda, A; Williams, DR (2001). "Retinal imaging using adaptive optics". In MacRae, S; Krueger, R; Applegate, RA. Customized Corneal Ablation: The Quest for SuperVision. SLACK, Inc. pp. 11–32. ISBN 1-55642-625-9.
  • "Improved Adaptive Optics Mirror Delivered". ESO Announcement. Erişim tarihi 6 Şubat 2014.
  • "'Adaptive optics' come into focus". BBC. 18 Şubat 2011. Erişim tarihi 24 Haziran 2013.
  • Joe Palca (24 Haziran 2013). "For Sharpest Views, Scope The Sky With Quick-Change Mirrors". NPR. Erişim tarihi 24 Haziran 2013.
  • Watson, Jim. Tip-Tilt Correction for Astronomical Telescopes using Adaptive Control (PDF). Wescon – Integrated Circuit Expo 1997.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Lazer</span> ışığın uyarılmış radyasyon ile yükseltilmesini sağlayan bir optik düzenek

Lazer ışığın uyarılmış radyasyon ile yükseltilmesini sağlayan bir optik düzenektir. İsmini "Light Amplification by Stimulated Emission of Radiation" kelimelerinin baş harflerinden alır ve bu, "ışığın uyarılmış ışıma ile yükseltilmesi" anlamına gelir. İlk lazer, 1960 yılında Theodore Maiman tarafından Charles Townes ve Arthur L. Schawlow'un teorileri baz alınarak üretilmiştir. Lazerin ışıktan daha düşük mikrodalgafrekanslarında çalışan versiyonu olan "maser" ise Townes tarafından 1953 yılında bulunmuştur.

Ultraviyole (UV) veya morötesi; dalga boyu görünür ışıktan kısa, ancak X-ışınlarından uzun olan bir elektromanyetik radyasyon şeklidir. Güneş ışığında bulunur ve Güneş'ten çıkan toplam elektromanyetik radyasyonun yaklaşık %10'unu oluşturur. Ayrıca elektrik arkları, Çerenkov radyasyonu, cıva buharlı lambalar, bronzlaşma lambaları ve siyah ışık gibi kaynaklar tarafından üretilir. Uzun dalga boylu UV fotonları atomları iyonize edecek enerjiye sahip olmadığı için iyonlaştırıcı bir radyasyon olarak kabul edilmese de, kimyasal reaksiyonlara neden olabilir ve birçok maddenin parlamasına neden olabilir. Kimyasal ve biyolojik etkiler de dahil olmak üzere pek çok pratik uygulama, UV radyasyonunun organik moleküllerle etkileşime girmesinden türer. Bu etkileşimler emilimi veya ısıtma dahil moleküllerdeki enerji durumlarının ayarlanmasını içerebilir.

<span class="mw-page-title-main">Spektroskopi</span>

Spektroskopi elektromanyetik radyasyon ile maddenin etkileşiminin radyasyonun dalga boyu veya frekansının bir fonksiyonu olarak ortaya çıkan elektromanyetik spektrumu (tayf) ölçen ve yorumlayan bir çalışma alanıdır. Başka bir deyişle, elektromanyetik spektrumun tüm bantlarında görünür ışıktan kaynaklı olarak meydana gelen bir kesin renk çalışmasıdır.

<span class="mw-page-title-main">Optik fiber</span>

Fiberoptik ya da optik fiber, kendi boyunca içinden ışığın yönlendirebildiği plastik veya cam fiberlerden oluşmuş bir optik liftir. Optik fiberler diğer iletişim malzemelerine oranla uzun mesafelerdeki veri iletişiminin daha hızlı ve yüksek değerlerde yapılabilmesine olanak verdikleri için fiberoptik haberleşme sistemlerinde çok sıklıkla kullanılmaktadırlar. Metal kablolar yerine fiber kabloların kullanılmasının nedeni, daha az kayba neden olmaları ve elektromanyetik etkileşimden etkilenmemeleridir. Optik fiberler aynı zamanda birçok sensör (alıcı) ve benzeri uygulamaların yapımında oldukça sık olarak kullanılmaktadırlar.

<span class="mw-page-title-main">Fotonik</span> ışık enerjisi bilimi

Fotonik, bir fiziksel parçacık olan elektronun belirli çerçevedeki uygulama/kullanım alanına elektronik denildiği gibi, yine elektromanyetik radyasyonun partiküler karakter sergilediği için bir parçacık olarak ele alınan kuantumu yani fotonunun belirli çerçevedeki kullanım/uygulama alanlarının teorik zeminine verilen isim.

<span class="mw-page-title-main">Optik lif</span>

Optik lif(optical fiber) veya bilinen diğer adıyla ışıklifi(fiberoptic), yüksek kaliteli püskürtülmüş cam veya plastikten yapılmış olan esnek ve şeffaf bir lifdir. Kabaca insan saçından daha kalındır. Işığı lifin iki ucuna iletmek için bir ışık kılavuzluğu veya ışık borusu görevini görür. Işıkliflerin dizayn ve uygulaması ile ilgilenen uygulamalı bilim ve mühendislik dalı “fiber optik” olarak bilinir. Optik lifler, iletişimin diğer formlarına göre iletimin daha uzun mesafelerde ve daha geniş bant genişliği ile olmasına imkân veren “ışıklifi iletişim” alanında yaygın olarak kullanılır. Liflerin metal kablolar yerine kullanılmasının nedeni sinyallerin lifler üzerinde daha az kayıpla ilerlemesi ve aynı zamanda elektromanyetik engellerden etkilenmemesidir. Lifler aynı zamanda ışıklandırma için de kullanılır ve yığınlar halinde sarılır. Bu şekilde sınırlı alanlarda görüntülemeye imkân verecek şekilde görüntü taşımak için kullanılabilirler. Işıklifleri özel tasarlanmış lifli sensörler ve lifli lazerler dâhil, birçok değişik uygulama içinde de kullanılırlar.

<span class="mw-page-title-main">Fiber optik iletişim</span>

Fiber optik iletişim ya da bilinen adıyla ışıklifi, optik lif boyunca ışık sinyalleri göndererek bilginin bir yerden başka bir yere iletilmesi metodudur. Işık, bilgi taşımak için yönlendirilmiş elektromanyetik taşıyıcı dalga görevi görür. İlk olarak 1970 yılında geliştirilen ışıklifli iletişim sistemleri; telekomünikasyon endüstrisinde devrim yaratmış, bilgi çağının gelişinde önemli bir rol oynamıştır. Elektriksel iletimden avantajlı olması nedeniyle ışıklifleri gelişmiş ülkelerdeki çekirdek ağlarda bakır tellerin iletişimdeki yerini aldı.

Bu Lazer konularının bir listesidir.

Kimyasal elementlerin ya da kimyasal bileşiklerin emisyon spektrumu atom ya da moleküllerin yüksek enerji seviyesinden düşük enerji seviyesine geçişinden elde edilen elektromanyetik radyasyonun frekans spektrumudur. Yayılmış fotonun enerjisi iki enerji düzeyi arasındaki farka eşittir. Her atom için birçok mümkün geçişler vardır ve enerji düzeyleri arasındaki her geçiş spesifik enerji farkına sahiptir. Bu farklı geçişlerin toplamı, farklı ışınlar halinde gönderilmiş dalga boylarına ve emisyon spektrumunun düzenlenmesine neden olur. Her elementin emisyon spektrumu özeldir. Dahası, spektroskopi elementlerin madde içindeki bilinmeyen kompozisyonunu tespit etmek için kullanılabilir. Buna benzer olarak, moleküllerin emisyon spektrumları maddelerin kimyasal analizlerinde kullanılabilir.

Kuantum optiği yarı klasik ve kuantum mekaniği fiziğini kullanarak ışığı içeren olayları ve onun mikroskobik seviyelerdeki maddelerle etkileşimini inceler.

Elektrooptik sensör, ışığı dönüştüren veya bir elektronik sinyal halinde ışıktaki değişimi sağlayan elektronik detektörlerdir. Bu sensörler birçok endüstriyel ve tüketici alanlarda kullanılır. Örneğin:

Fiber lazer, içerisinde doğada nadir bulunan iterbiyum, neodimyum, disprozyum, praseodim ve tulyum gibi elementler barındıran lazer türüdür. Bu elementler devamlı olmayarak ışık yükseltmeyi sağlayan katkılı fiber yükselticilerle alakalıdırlar. Raman saçması veya dört dalga karışımı da bu şekilde fiber lazere güç sağlamaktadırlar.

Fotovoltaik sistem veya PV sistem, güneş enerjisini kullanılabilir enerjiye çeviren sistemdir. PV sistem, birçok bileşenlerin bir araya getirilmesi ile oluşturulur ve güneş panelleriyle güneş ışığını soğurup elektriğe çevirir. Güneş çeviricisi elektriksel akımı doğru akımdan alternatif akıma doğru değiştirmektedir. Bunun gibi birleştirme, kablolama ve diğer elektriksel aletlerin kurulumu çalışan bir sistem oluşturmaktadır. Ayrıca bu sistem güneş takip sistemi ile kendisinin genel performansını artırabilir ve gömülü pil çözümünü de içinde barındırabilir.

Uyarlanabilir optik, optik sistemlerinin performansını artırmak için geliştirilmiş ve dalga cephesi bozulmalarını en aza indirmek amacıyla kurulmuş bir teknolojidir.

<span class="mw-page-title-main">Optik saydamlık ve yarı saydamlık</span>

Fiziğin optik alanında, geçirgenlik ışığın bir materyal üzerinden dağılmadan geçebilmesine olanak sağlayan fiziksel bir özelliktir. Makroskopik (büyük) ölçeklerde, fotonların Snell kanununa göre hareket ettikleri söylenebilir. Yarı saydamlık, geçirgenliğin içinde bulunan bir üst kümedir ve ışığın geçmesine izin verir ancak Snell kanununu takip etmek zorunda değildir. Fotonlar, kırınım işaretleri içinde herhangi bir değişim meydana geldiğinde her iki arayüzde de dağınım gösterebilirler. Diğer bir deyişle, yarı saydam bir ortam ışığın ulaşım yapmasına olanak sağlarken saydam olan bir ortam sadece ışığın geçişini onaylamakla kalmaz aynı zamanda görüntü oluşumuna da izin verir. Yarı saydamlığın karşıtı olan kavram opaklıktır. Saydam yani geçirgen olan maddeler oldukça net görülen, tamamının tek bir renge sahip olduğu ya da her rengi içeren bir spekturumu meydana getiren herhangi bir kombinasyona sahip olabilir.

<span class="mw-page-title-main">Süpersüreklilik</span>

Optikte süpersüreklilik, doğrusal olmayan işlemlerin bir pompa ışını üzerinde birlikte hareket etmesiyle orijinal pompa ışınının ciddi bir spektral genişlemesi sonucu oluşur. Örneğin; mikro yapılı fiber optik kullanılarak akıcı bir süpersüreklilik sağlanır. Ne kadar bir genişlemenin bir süpersüreklilik sağlayabileceği hakkında kesin bir açıklama bulunmamaktadır. Ancak araştırmacılar 60 nanometrelik bir genişlemeye ne kadar yaklaşırlarsa süpersürekliliğin gerçekleşmesinin ihtimalinin o kadar çok olacağını iddia ettiler.

<span class="mw-page-title-main">İndüksiyonla birleşmiş plazma atomik emisyon spektroskopisi</span>

İndüksiyonla birleşmiş plazma atomik emisyon spektroskopisi, aynı zamanda İndüksiyonla birleşmiş plazma optik emisyon spektroskopisi olarak da bilinen kimyasal elementlerin tespiti için kullanılan analitik bir tekniktir. Belirli bir elementin karakteristik dalga boylarında elektromanyetik radyasyon yayan uyarılmış atomlarını ve iyonlarını üretmek için indüksiyonla birleşmiş plazmayı kullanan bir tür emisyon spektroskopisidir. Alev sıcaklığı 6000 ila 10.000 K aralığında olan bir alev tekniğidir. Oluşan emisyonun yoğunluğu, numunedeki elementin konsantrasyonunun bir göstergesidir.

<span class="mw-page-title-main">Gigabit Ethernet</span>

Bilgisayar ağlarında, Gigabit Ethernet, Ethernet çerçevelerinin saniyede gigabit hızında iletilmesine uygulanan terimdir. En popüler varyant 1000BASE-T, IEEE 802.3ab standardı tarafından tanımlanır. 1999'da kullanılmaya başlandı ve Hızlı Ethernet'e göre önemli bir hız artışı ve yaygın olarak mevcut, ekonomik ve önceki standartlara benzer kablo ve ekipman kullanımı nedeniyle kablolu yerel ağlarda Fast (Hızlı) Ethernet'in yerini aldı.

<span class="mw-page-title-main">İletim ortamı</span> Conduit for signal propagation

İletim ortamı, telekomünikasyon amaçları için sinyallerin yayılmasına aracılık edebilen bir ortamdır. Sinyaller tipik olarak seçilen ortam için uygun bir tür dalgaya empoze edilmektedir. Örneğin, veriler sesi modüle edebilir ve sesler için bir iletim ortamı hava olabilir, ancak katılar ve sıvılar da iletim ortamı olarak işlev görebilmektedir. Vakum veya hava, ışık ve radyo dalgaları gibi elektromanyetik dalgalar için iyi bir iletim ortamı oluşturmaktadır. Elektromanyetik dalgaların yayılması için maddi madde gerekli olmasa da, bu tür dalgalar genellikle içinden geçtikleri iletim ortamından, örneğin ortamlar arasındaki arayüzlerde absorpsiyon, yansıma veya kırılma ile etkilenmektedir. Bu nedenle, dalgaları iletmek veya yönlendirmek için teknik cihazlar kullanılabilmektedir. Bu nedenle, iletim ortamı olarak bir optik fiber veya bir bakır kablo kullanılmaktadır.

<span class="mw-page-title-main">Lazer diyot</span> yarı iletken bir cihaz

Lazer diyot, doğrudan elektrik akımıyla pompalanan bir diyotun diyotun bağlantı noktasında kalıcı koşullar yaratabildiği LED'e benzer bir yarı iletken cihazdır.