İçeriğe atla

Işık verimi

Işık gözün algıladığı elektromanyetik ışınıma verilen isimdir. Işık gücünün toplam elektromanyetik ışınım gücüne olan oranı ise Batı dillerinde efficacy olarak adlandırılır. Bu terim dilimize ışık verimliliği ya da ışık etkinliği olarak çevrilebilir. Elektromanyetik ışınımın kızılötesi ve morötesi kısımları aydınlatma için kullanılamaz. Bir kaynağın tam ışık verimi, elektromanyetik ışınımın insan gözü tarafından ne derece algılandığı ile ilgilidir.

Dalgaboyu ve frekans

Işınım dalgaboyu veya frekans ile tarif edilebilir. İkisi arasındaki ilişki

Burada λ dalga boyu, f frekans ve c de ışık hızıdır.

Işık hızı boşlukta 299.792.458 m/s'dir. MKS'de dalga boyu birimi m, frekans birimi ise Hz'dir. (Yukarıdaki ilişkide frekans GHz cinsinden verilirse, dalga boyu da nm cinsinden hesaplanabilir.)

İnsan gözü

Bir ışık kaynağı çevreye çeşitli dalga boylarında ışınım yayar. Göz bu ışınımın sadece bir bölümünü algılar. İnsan gözü 380-740 nm (nanometre) arasındaki dalga boylarına duyarlıdır. Bu bandın üç noktalarında duyarlılık düşüktür. Maksimum duyarlıklık (aydınlık ortamda) 555 nm dalga boyundaki (ya da frekans birimleriyle verilecek olursa 540 THz'deki) ışınıma karşı durarlılıktır. (Bu rakamlar aydınlık ortam içindir. Renklerin ayırt edilemediği kadar karanlık ortamda maksimum duyarlılık 507 nm'dedir.)

Işık akısı

Işık gücüne ışık akısı denilir. Bu niceliğin birimi lumendir (lm kısaltmasıyla gösterilir). 1 W gücünde elektromanyetik ışınım yapan ve sadece 555 nm dalga boyunda ışık üreten ışık kaynağı 683.002 lm kadar ışık akısı üretir. Diğer dalga boylarında ise 1 W'lık kaynak daha düşük ışık akısı üretir.

Işık verimliliği

Işık verimliliği iki farklı şekilde gösterilebilir:

  • Bir kaynağın ürettiği ışık akısı kaynağın ürettiği toplam elektromanyetik güce bölünür Sonuç lm/W birimiyle verilir.
  • Bir kaynağın ürettiği ışık akısı sadece 555 nm dalga boyunda üretim yapan aynı güçteki bir kaynağın ışık akısına (Gücün 683 misli) bölünür. Sonuç % oranıyla ifade edilir.

Burada Φ kaynağın ürettiği ışık akısı ve P de kaynağın gücüdür.

Doğal kaynakların ışık verimliliği

Yıldızların ışık verimliliği ölçülmüştür. Buna göre yıldız yüzeyinin sıcaklığı arttıkça ışık verimliliği de artmaktadır. Mesela Akrep burcundaki Antares gibi M sınıfı kırmızı yüzeyli yıldızların ışık verimliliği 30 lm/W civarındayken, G sınıfı bir yıldız olan Güneş’te verimlilik 80 lm/W'tır.

Toplam verimlilik

Bir ışık kaynağı sadece elektromanyetik ışınım üretmez. Gücün bir bölümü de ısı, ses hatta bazı durumlarda titreşim şeklinde mekanik harekete gider. Yapay ışıklandırma araçlarında, bütün bu kayıplar kaynağın elektrik şebekesinden çektiği güç olarak rahatlıkla ölçülebilir. Kaynağın ürettiği toplam elektromanyetik gücün ölçülmesi zor olduğu halde, kaynağın elektrik şebekesinden çektiği gücün ölçülmesi kolaydır. Bu sebeple, genellikle verimlilik bütün kayıpları göz önüne alınan toplam verimlilik (priz verimliliği) olarak hesaplanır. Doğal olarak, bu verimlilik ışık verimliliğinden daha düşüktür.

Örnek

Şebekeden 5 W çeken bir kaynak 1366 lm ışık akısı üretirse, kaynağın aydınlık ortamda verimliliği şu şekilde bulunur.

Bazı yapay kaynakların verimliliği

Toplam verimlilik mumda 0,3 lm/W, gaz lambasında ise 2 lm/W dolaylarındadır. Akkor flamanlı ampullerde verimlilik genellikle 10 ile 20 lm/W arasında değişmektedir. Floresan lambalarda 50 ile 100 lm/W, sodyum buharlı lambalarda ise 100 ile 200 lm/W verimlilik değerlerine ulaşılabilmektedir. Ancak yüksek verimlilik 555 nm civarındaki bir bant anlamına gelmektedir ki, bu durum renk algılamasını bozduğundan, bu tür aydınlatma araçları verimlilik avantajına rağmen, fazla rağbet görmemektedir. Buna karşılık geliştirilme aşamasındaki LED tipi lambaları renk algılamasını bozmadan yüksek toplam verimlilik sağlaması beklenmektedir.

Ayrıca bakınız

İlgili Araştırma Makaleleri

Elektromanyetik tayf veya elektromanyetik spektrum (EMS), evrenin herhangi bir yerinde fizik kurallarınca mümkün kılınan tüm elektromanyetik radyasyonu ve farklı ışınım türevlerinin dalga boyları veya frekanslarına göre bu tayftaki rölatif yerlerini ifade eden ölçüt. Herhangi bir cismin elektromanyetik tayfı veya spektrumu, o cisim tarafından çevresine yayılan karakteristik net elektromanyetik radyasyonu tabir eder.

<span class="mw-page-title-main">Dalga denklemi</span> kısmi diferansiyel bir denklem

Dalga denklemi fizikte çok önemli yere sahip bir kısmi diferansiyel denklemdir. Bu denklemin çözümlerinden, ses, ışık ve su dalgalarının hareketlerini betimleyen fiziksel nicelikler çıkar. Kullanım alanı, akustik, akışkanlar mekaniği ve elektromanyetikte oldukça fazladır. Genellikle elektromanyetik dalgalar gibi dalgalar için dalga denkleminin vektörel formülasyonu kullanılır. Bu formülasyonda elektrik alanları şeklindeki vektörlerle gösterebilir ve vektörün her bi bileşeni skaler dalga denklemine uymak zorundadır. Yani vektörel dalga denklemleri çözülürken her bir bileşen ayrı ayrı çözülür. Denklemin en basit hali aşağıdaki şekliyle gösterilir,

<span class="mw-page-title-main">Radyo dalgaları</span> Radyo Dalgaları (Radio Waves)

Radyo dalgaları, radyo frekansı ile gerçekleşen elektromanyetik dalgalardır. Tel gibi somut bağlantılar kullanmadan, atmosfer içerisinde veri taşınmasına olanak tanırlar. Radyo dalgalarını diğer elektromanyetik dalgalardan ayıran özellikleri görece uzun dalgaboylarıdır.

Faz kelimesinin sözlük anlamı evredir.

Elektriksel gücün tanımı aşağıdaki gibidir.

Genlik, periyodik harekette maksimum düzey olarak tanımlanabilir. Genlik, bir dalganın tepesinden çukuruna kadar olan düşey uzaklığın yarısıdır. Genlik kavramı ışık, elektrik, radyo dalgaları gibi konuları da kapsayan fen bilimleri alanında kullanılır.

Işık akısı bir fiziksel niceliktir ve insan gözünün algıladığı ışık gücünün miktarını ifade eder. Bu tariften de anlaşıldığı gibi, ışık akısı hem ışınım yapan kaynağın gücüne hem de insan gözünün özelliğine bağlıdır. SI birimi MKS sisteminde lumen dir.

Işık şiddeti bir ışık kaynağından birim katıaçı içerisinde yayılan ışık akısının bir ölçüsüdür. Işık akısı dendiği zaman, kaynaktan yayılan toplam akı, ışık şiddeti dendiği zaman ise bir steradyanlık katı açı içerisindeki akı kastedilir. MKS sistemi içerisinde ışık akısının birimi lumen, ışık şiddetinin birimi ise candela ya da Türkçe söylenişi ile kandeladır.

Bir ışık kaynağı tarafından aydınlatılan birim yüzeye düşen ışık akısının miktarı. (Illuminance) Birimi MKS sisteminde lüks, CGS sisteminde ise phot'tur.

Işık, bir enerji çeşididir. Sabit kütleli sis­temlerde enerji yoktan var edilemez. Ancak bir biçimden diğerine dönüşebilir. Bu yüzden ışık, yalnızca enerjinin bir başka biçiminin dönüştürülmesiyle elde edilir. Elektrik enerjisi bir elektrik lambasında ya da deşarj tüpünde ışığa dönüştürülür. Kimyasal enerji ve ateşböceği gibi ışık saçan hayvanlarda ışığa dönüşür. Bu dönüşüm ters yönde de olabilir. Örneğin bir fotoelektrik hücrede ışık elektrik enerjisi üretir.

<span class="mw-page-title-main">Kandela</span> ışık şiddeti birimi

Kandela, Işık şiddeti birimidir. Uluslararası SI sistemindeki 7 temel birimden biridir..

<span class="mw-page-title-main">Radyasyon</span> Uzayda hareket eden dalgalar veya parçacıklar

Radyasyon veya ışınım, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. "Radyoaktif maddelerin alfa, beta, gama gibi ışınları yaymasına" veya "Uzayda yayılan herhangi bir elektromanyetik ışını meydana getiren unsurların tamamına" da radyasyon denir. Bir maddenin atom çekirdeğindeki nötronların sayısı, proton sayısına göre oldukça fazla veya oldukça az ise; bu tür maddeler kararsız bir yapı göstermekte ve çekirdeğindeki nötronlar alfa, beta, gama gibi çeşitli ışınlar yaymak suretiyle parçalanmaktadırlar. Çevresine bu şekilde ışın saçarak parçalanan maddelere radyoaktif madde denir.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

<span class="mw-page-title-main">Kara cisim ışınımı</span> opak ve fiziksel yansıma gerçekleştirmeyen siyah cisimden yayılan ve sabit tutulan tekdüze ısı

Siyah cisim ışıması içinde elektromanyetik ışıma ya da çevresinde termodinamik dengeyi sağlayan ya da siyah cisim tarafından yayılan ve sabit tutulan tekdüze ısıdır. Işıma çok özel bir spektruma ve sadece cismin sıcaklığına bağlı olan bir yoğunluğa sahiptir. Termal ışıma, birçok sıradan obje tarafından kendiliğinden yayılan bir siyah cisim ışıması sayılabilecek türden bir ışımadır. Tamamen yalıtılmış bir termal denge ortamı siyah cisim ışımasını kapsar ve bir boşluk boyunca kendi duvarını yaratarak yayılır, boşluğun etkisi göz ardı edilebilecek kadar küçüktür. Siyah cisim oda sıcaklığında siyah görünür, yaydığı enerjinin çoğu kızılötesidir ve insan gözü ile fark edilemez. Daha yüksek sıcaklıklarda, siyah cisimlerin özkütleleri artarken renkleri de soluk kırmızıdan kör edecek şekilde parlaklığı olan mavi-beyaza dönüşür. Gezegenler ve yıldızlar kendi sistemleri ve siyah cisimler ile termal dengede olmamalarına rağmen, yaydıkları enerji siyah cisim ışımasına en yakın olaydır. Kara delikler siyah cisim olarak sayılabilirler ve kütlelerine bağlı bir sıcaklıkta siyah cisim ışıması yaptıklarına inanılır . Siyah Cisim terimi, ilk olarak Gustav Kirchhoff tarafından 1860 yılında kullanılmıştır.

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

Isıl ışınım maddedeki yüklü parçacıkların ısıl hareketiyle meydana gelmiş elektromanyetik ışınımdır. Isısı mutlak sıfırdan büyük olan her madde ısıl ışınım yayar. Isısı mutlak sıfırdan büyük olan maddelerde atomlar arası çarpışmalar, atomların ya da moleküllerin kinetik enerjisinde değişime neden olur.

Geometrik optik veya ışın optiği, ışık yayılmasını ışınlarla açıklar. Geometrik optikte ışın bir soyutlama ya da enstrumandır; ışığın belirli şartlarda yayıldığı yola yaklaşmada kullanışlıdır.

Teorik fzikte, Nordstrom kütleçekim kanunu genel göreliliğin bir öncülüdür. Açıkçası, Fin’li teorik fizikçi Gunnar Nordström tarafından 1912 de ve 1913 te önerilen iki ayrı teori vardır. Bunlardan ilki, hızla geçerliliğini yitirmiş, ancak ikinci, yerçekimi etkileri kavisli uzay-zaman geometrisi bakımından tamamen kabul eden. kütleçekim metrik teorisinin bilinen ilk örneği olmuştur. Nordstrom teorilerinin hiçbiri gözlem ve deney ile uyum içinde değildir. Bununla birlikte, ilkinin kısa sürede üzerindeki ilgiyi kaybetmesi, ikinciyi de etkilemiştir. İkinciden geriye kalan, kütleçekim kendine yeten relativistik teorisi. Genel görelilik ve kütleçekim teorileri için temel taşı niteliği görevi görmektedir. Bir örnek olarak, bu teori, pedagojik tartışmalar kapsamında özellikle yararlıdır.

<span class="mw-page-title-main">UV kurutma</span>

UV kurutma işlemi ultraviyole (morötesi) ışınlar ve görünür ışınlar yardımı ile polimer yapıdaki UV Mürekkeplerinin fotokimyasal çapraz reaksiyona girerek kurutulması işlemidir. UV Kurutma işlemi; baskı, kaplama ve dekorasyon alanında anahtar bir üründür. Bu işlem düşük ısılarda, yüksek hızda ve solvent işlemine göre buharlaşma yolu ile değil polimerizasyon tekniği ile kurumaktadır. İlk olarak 1960'larda ortaya çıkan teknoloji, artırılarak birçok üretim endüstrisinde kullanılmaya başlanmıştır.

Fizikte optik derinlik veya optik kalınlık, bir materyale gelen ve aktarılan ışınım gücünün oranının doğal logaritmasıdır; spektral optik derinlik veya spektral optik kalınlık ise bir materyale gelen ve aktarılan spektral radyant gücün oranının doğal logaritmasıdır. Optik derinlik boyutsuzdur ve özellikle bir uzunluk değildir, ancak optik yol uzunluğunun monoton olarak artan bir fonksiyonudur ve yol uzunluğu sıfıra yaklaştıkça sıfıra yaklaşır. Optik derinlik için "optik yoğunluk" teriminin kullanılması önerilmez.