İçeriğe atla

Işık ötesi hız

Işık ötesi hız (ayrıca faster-than-light, superluminal ve FTL ya da Türkçede IDH yani Işıktan Daha Hızlı olarak da bilinir), ışıktan hızlı bilgi aktarımı ve ışıktan hızlı yolculuk, bilginin ve maddenin ışık hızının daha üstünde hızlarla hareket etmesi halinde kazanacağı hız. Özel görelilik kuramına göre, kütlesi olan ve ışık hızından düşük hıza sahip olan bir parçacığın ışık hızına ulaşabilmesi için sonsuz enerjiye ihtiyacı vardır. Ne var ki özel görelilik, ışıktan hızlı hareket eden kütleli parçacıkların varlığını her zaman yasaklamaz (bakınız: takyon).

Evrenin hız kotası olarak tanımlayabileceğimiz ışık hızının üstüne çıkılması madde korunurluğuyla mümkün değildir. (Madde olma, madde olarak bulunma halini koruma.) Herhangi bir maddenin ışık hızının üstüne çıkması durumunda enerji ile eş hatta daha fazla bir hıza sahip olacaktır. Bu ise maddenin kütlesi ile orantılı olarak enerjiye dönüşeceğini gösterir. (E=mc2)

Diğer yandan bazı fizikçiler, "apparent" (görünür) ya da "effective" (etkili)[1][2][3][4] ışık ötesi hız olarak adlandırılan bir hipotez ortaya atmışlardır. Bu hipoteze göre uzayzamanın olağandışı biçimde bozulmuş bölgeleri, maddenin çok uzaktaki bölgelere "normal" bir rotada yapacağı seyahatten çok daha kısa sürede (ışık hızını aşmaksızın) ulaşmasına olanak verebilir.

Görünür FTL hipotezi genel görelilikle çelişmez. Görünür FTL tasarısı örnekleri Alcubierre aracı ve seyahat edilebilir solucandelikleri sayılabilir. Ne var ki bu çözümlerin fiziksel olabilirliği belirsizdir.

FTL(IDH) Işık ötesi bilgi-dışı iletim

FTL bilginin veya maddenin, ışığın boşluk içinde sabit (299,792,458 m/s) olan ışık hızından (c) daha hızlı iletimidir. Bu durum ışık hızından hızlı iletim olarak ifade edilmez.

Şöyle ki:

Işık hızından daha hızlı iletim görülen olan bazı olaylarda bilgi iletimi yoktur (İleriki bölümde örnekler verilecektir.)

Işık boşluk dışında bir ortam içerisinde hareket ettiğinde c/n (n ortamın kırılım indeksi olmak üzere ) hızında hareket eder ve bazı ortamlarda bazı parçacıklar ışığın bu ortam içindeki c/n hızından hızlı ancak hala c hızından düşük hareket eder.

Bu olayların hiçbiri özel göreliliği ihlal etmez veya nedensellikle ilgili bir sorun yaratmazlar. Bu nedenle FTL (IDH ) olayı olarak tanımlanmazlar.

Aşağıdaki örnekler, ışıktan hızlı iletime örnek gösterilebilecek belirli olayları içermektedir. Ancak bu durumlarda enerji veya bilginin ışıktan hızlı iletimi söz konusu değildir ve Özel Göreliliği ihlal etmezler.

Günlük gökyüzü hareketi

Dünyadaki bir gözlemci için, gökyüzü cisimleri dünya çevresinde 1 turunu 1 günde tamamlar. Güneş sistemine en yakın yıldız olan Proxima Centauri yaklaşık 4 ışık yılı uzaklıktadır.  Bir daire çevresinde dönen cismin hızı; cismin açısal hızının ve dairenin yarıçapının çarpımı olduğu için; dünyadaki bir gözlemciye göre, Proxima Centauri'nin hızı c'den defalarca fazla olabilir.  Dünyadaki bir gözlemciye göre ayrıca örneğin kuyruklu yıldızların hızları ışık hızı altı ve üstü seviyelerde değişiklik gösterebilir. Kuyruklu yıldızların 1000 AU'dan büyük yörüngeleri olabilir. 1000 AU'luk bir yarıçapa sahip dairenin 1 ışık gününden fazla çevresi olabilir.[5] Diğer bir deyişle; bu uzaklıktaki bir kuyruklu yıldız, yeryüzündeki bir gözlemci için ışık hızının üstünde bir hıza sahip görünebilir.

Işık noktaları ve gölgeler

Eğer bir lazer ışını uzak bir nesne üzerinde gezdirilirse, lazer ışığının düştüğü nokta nesne üzerinde ışık hızından daha yüksek bir hızla kaydırılabilir. Benzer şekilde, uzak bir nesne üzerine yansıtılan bir gölge de ışık hızından yüksek bir hızda hareket edebilir.[6] Her iki durumda da, ne kaynaktan nesneye ulaşan ışık, c'den daha hızlı hareket eder ne de ışıktan hızlı bir bilgi iletimi söz konusudur.[6][7][8]

Statik alan etkilerinin iletimi

Sabit bir hızla hareket eden yerçekimi ve statik elektrik alan kaynaklarının pozisyonlarında bir "gecikme" veya "kayma" etkisi görülmediği için, statik alan etkisi ışıktan hızlı hareket ediyormuş gibi gözlemlenebilir. Bununla beraber, referans çerçevedeki bir değişiklikle, statik kaynağın düzgün hareketi ortadan kaldırılabilir ve bu statik alanın yönünün tüm uzaklıklarda anında  değişmesine neden olur. Ancak bu bir kaynak hareketinin taşınması değildir ve bu değişiklik kaynaktan bir bilginin iletimi amacıyla kullanılamaz. Kaynaktan gözlemciye gelen ışık hızından hızlı iletilen bir bilgi veya madde söz konusu değildir.

Yaklaşma hızları

Tek bir referans çerçevede birbirine yaklaşan iki nesnenin hızı karşılıklı hız veya yaklaşma hızı olarak anılır. Eğer bu nesneler ışık hızına yakın bir hızla zıt yönlerde uzaklaşıyorlarsa, yaklaşma hızları ışık hızının iki katına çıkabilir.

Bir parçacık hızlandırıcıda birbirine yaklaşan yüksek hızlı iki parçacık hayal edin. Yaklaşma hızı bu iki cismin arasındaki uzaklığın azalması oranında olacaktır. Hızlandırıcıya göre sabit durumda olan bir gözlemciye göre, bu hız;  ışık hızının iki katının bir miktar altında olacaktır.

Özel görelilik, bu durumla çelişmez ve bu parçacıkların göreli hızının hesaplanmasında Galileo göreliliğinin kullanılmasının yanlış olduğunu ifade eder.

Özel görelilik bu şekilde birbirlerine göre v ve -v hızlarında hareket eden ve yaklaşma hızları 2v>c olan nesneler için kendi hesaplama yöntemini sunar. Söz konusu nesnelerin hız c'nin katları olarak  β = v/c ; şeklinde fade edilirse;

Öz hızlar

Dünyadan uzaklık

c'nin üzerindeki faz hızları

c'nin üzerindeki grup hızları

Evrensel genişleme

Astronomik gözlemler

Kuantum mekaniği

Kaynakça

  1. ^ Gonzalez-Diaz, Pedro F. (2000). "Warp drive space-time" (PDF). Physical Review D. Cilt 62. ss. 044005-1-044005-7. doi:10.1103/PhysRevD.62.044005. 14 Haziran 2007 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 15 Eylül 2009.  arXiv:gr-qc/9907026
  2. ^ "Arşivlenmiş kopya". 13 Temmuz 2019 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 15 Eylül 2009. 
  3. ^ PDF for gr-qc/9810026
  4. ^ PDF for gr-qc/9908023
  5. ^ "Arşivlenmiş kopya". 10 Eylül 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Ocak 2017. 
  6. ^ a b Gibbs, Philip (1997). "Is Faster-Than-Light Travel or Communication Possible?" 10 Mart 2010 tarihinde Wayback Machine sitesinde arşivlendi.. University of California, Riverside. Retrieved 20 August 2008.
  7. ^ Salmon, Wesley C. (2006). Four Decades of Scientific Explanation 21 Mart 2017 tarihinde Wayback Machine sitesinde arşivlendi.. University of Pittsburgh Pre. p. 107. 
  8. ^ Steane, Andrew (2012). The Wonderful World of Relativity: A Precise Guide for the General Reader 21 Mart 2017 tarihinde Wayback Machine sitesinde arşivlendi.. Oxford University Press. p. 180. Extract of page 180 20 Mart 2017 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

<span class="mw-page-title-main">Özel görelilik</span> izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir

Fizikte, özel görelilik teorisi veya izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir. Albert Einstein'ın orijinal çalışmalarında teori, iki varsayıma dayanmaktadır:

  1. Fizik yasaları, tüm süredurum referans çerçevelerinde değişmezdir.
  2. Işık kaynağının veya gözlemcinin hareketinden bağımsız olarak vakumdaki ışığın hızı, tüm gözlemciler için aynıdır.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Newton'un hareket yasaları</span> Bilimsel Yasalar

Newton'un hareket yasaları, bir cisim üzerine etki eden kuvvetler ve cismin yaptığı hareket arasındaki ilişkileri ortaya koyan üç yasadır. İlk kez Isaac Newton tarafından 5 Temmuz 1687 tarihinde yayımlanan Philosophiae Naturalis Principia Mathematica adlı çalışmada ortaya konmuştur. Bu yasalar klasik mekaniğin temelini oluşturmuş, bizzat Newton tarafından fiziksel nesnelerin hareketleri ile ilgili birçok olayın açıklanmasında kullanılmıştır. Newton, çalışmasının üçüncü bölümünde, bu hareket yasalarını ve yine kendi bulduğu evrensel kütleçekim yasasını kullanarak Kepler'in gezegensel hareket yasalarının elde edilebileceğini göstermiştir.

1. Yasa
Eylemsiz referans sistemi adı verilen öyle referans sistemleri seçebiliriz ki, bu sistemde bulunan bir parçacık üzerine bir net kuvvet etki etmiyorsa cismin hızında herhangi bir değişiklik olmaz. Bu yasa genellikle şu şekilde basitleştirilir: “Bir cisim üzerine dengelenmemiş bir dış kuvvet etki etmedikçe, cisim hareket durumunu korur.”
2. Yasa
Eylemsiz bir referans sisteminde, bir parçacık üzerindeki net kuvvet onun çizgisel momentumunun zaman ile değişimi ile orantılıdır:

Takyon, ışıktan hızlı giden farazi parçacıklardır. İlk tanımı Arnold Sommerfeld'e atfedilmişse de, aslında ilk olarak George Sudarshan ve Gerald Feinberg tarafından yazılmıştır. Çoğu fizikçi için fiziğin bilinen yasaları ile tutarlı değildir, çünkü ışıktan daha hızlı parçacıkların olamayacağı tahmin edilmektedir. Takyonlar, Albert Einstein'in ünlü Genel görelilik yasasındaki v2 /c2 ifadesindeki cismin hızı (v) ışık hızından (c) büyük olursa ne olur sorusunun cevabıdırlar. Bu nedenle takyon parçacıklarının kütleleri reel sayı ile değil karmaşık sayılar ile ifade edilir aynı zamanda v daima c den büyük olacağından, takyonlar için en yavaş hız ışık hızıdır. Ancak tam olarak ışık hızında da olamazlar çünkü ışık hızında olursalar v2/c2 = 1 olacağından bu ifade tanımsız olur. Bununla birlikte, negatif kare kütle alanlar genellikle, "takyonlar" olarak adlandırılır ve aslında modern fizikte önemli bir rol oynamaya başlamıştır. Potansiyel tutarlı teoriler, ışıktan daha hızlı parçacıkların Lorentz değişmezinin kırılmasına dahil olanlara izin verir böylece özel göreceliğin altında yatan simetriye, ışığın hızı bir bariyer değildir, Böylece gerçek dünya için sınır olan ışık hızı burada da değerini korur. Buradan çıkarılacak sonuç ise, takyonların varlığının fizik ve matematik kurallarına aykırı olmadığıdır. Bunu takyonların varlığına delil olarak gösterenler vardır. Aynı (v)>(c) değerlerinin zaman denklemi içinde yerine konulması sonucunda zaman kavramının takyonlar için tıpkı kütle gibi imajiner olduğunu gösterir. Zaman gerçek olmadığı içinde zamanın oku olan entropi artışı söz konusu olmaz ve bu nedenle takyonlar evreni gerçek evrenin aksine büzüşmezler tam tersine sanal kütleleri nedeniyle çekim etkisine girmediklerinden evreni gererler. Böylece, başlanılan noktaya geri dönülen bir küresel evren modeli yerine takyon evreni için kenarları olmayan bir sonsuz evren söz konusudur. Ayrıca takyonların hızı enerjileri azaldıkça artar. Bu nedenle radyasyon yaydıkları varsayıldığında, azalan enerjileri nedeniyle sürekli hızlanırlar ve nihayet sıfır enerji için sonsuz hıza ulaşırlar. Enerji azaldıkça hızları arttığından dolayı kuvvet denilen etki hareketle aynı yönde olduğunda takyonların hızını arttırmaz tam tersine yavaşlatır. Birçok fizikçinin nötrino ve teorik takyonların özellikleri arasındaki olası bağlantıyı anlamaya çalışmış olduğuna dikkat etmek önemlidir.

<span class="mw-page-title-main">Görelilik ilkesi</span> Fizik yasalarının tüm referans çerçevelerinde aynı olması gerektiğini belirten fizik ilkesi

Görelik teorisi ya da basitçe fizikte görelilik genellikle Albert Einstein'ın iki teorisini kapsar. Bunlar özel görecelik ve genel göreceliktir.

<span class="mw-page-title-main">Işık hızı</span> elektromanyetik dalgaların boşluktaki hızı

Işığın boşluktaki hızı, fiziğin birçok alanında kullanılan önemli bir fiziksel sabittir. Genellikle c sembolüyle gösterilir. Tam değeri saniyede 299.792.458 metredir. Metrenin uzunluğu bu sabitten ve uluslararası zaman standardından hesaplanmıştır. Özel göreliliğe göre c, evrendeki bütün madde ve bilgilerin hareket edebileceği maksimum hızdır. Bütün kütlesiz parçacıkların ve ilgili alanlardaki değişimlerin boşluktaki hareket hızıdır. Bu parçacıklar ve dalgalar gözlemcinin eylemsiz referans çerçevesi ya da kaynağın hareketi ne olursa olsun c'de hareket ederler. Görelilik teorisi'nde c, uzay-zaman arasındaki ilişkiyi kurar; aynı zamanda meşhur kütle-enerji eşdeğerliliği formülünde de gözükür E = mc2. Işığın hava veya cam gibi şeffaf maddelerdeki ilerleyiş hızı c'den azdır. Benzer şekilde radyo dalgalarının tel kablolardaki ilerleyişi de c'den yavaştır. Işığın madde içindeki hızı v ile c arasındaki orana o maddenin kırılma endeksi denir. Örneğin, görülebilir ışık için camın kırılma endeksi genellikle 1,5 civarındadır. Yani ışık camın içinde c / 1,5 ≈ 200.000 km/s ile hareket eder. Hangi açıdan bakılırsa bakılsın ışık ve öteki elektromanyetik dalgalar anında yayılıyormuş gibi gözükür ancak, ölçülebilir hızlarının uzun mesafeler ve hassas ölçümlerle ölçülebilir sonuçları vardır. Uzaydaki keşif araçlarıyla iletişim kurarken mesajların Dünya'dan uzay aracına ya da uzay aracından Dünya'ya ulaşması dakikalar ya da saatler alabilir. Yıldızlardan gelen ışık onları yıllar önce terk etmiştir ve bu sayede uzaktaki nesnelere bakarak evrenin tarihini çalışma şansı verir. Işığın ölçülebilir hızı aynı zamanda bilgisayardaki bilgilerin çipler arasında aktarılması gerektiği için bilgisayarların teorik hızını da sınırlar. Işık hızı, uzak mesafeleri yüksek isabetle ölçebilmek için uçuş zamanı ölçümlerinde de kullanılır.

<span class="mw-page-title-main">Hız</span> vektörel bir fiziksel nicelik

Hız, bir nesnenin hareket yönü ile birlikte olan süratini ifade eder. Hız, cisimlerin hareketini tanımlayan bir klasik mekanik dalı olan kinematikte temel bir kavramdır.

<span class="mw-page-title-main">Hareket eden mıknatıs ve iletken problemi</span> düşünce deneyi

Hareketli mıknatıs ve iletken problemi 19. yüzyılda ortaya çıkan, klasik elektromanyetizma ve özel görelilik kesişimi ile ilgili ünlü bir düşünce deneyidir. Mıknatısa göre sabit hız (v) ile hareket eden iletkendeki akım, mıknatısın ve iletkenin referans sistemlerinde hesaplanır. "Sadece "göreli" hareket gözlemlenebilir, diğerlerinin mutlak bir standardı yoktur." diye belirten temel görelilik ilkesi doğrultusunda, deneydeki gözlemlenebilir miktar olan akım, her durumda aynıdır. Ancak, Maxwell denklemlerine göre, iletkendeki yük, mıknatıs referans sisteminde "manyetik kuvvete" ve iletken referans sisteminde "elektrik kuvvetine" maruz kalır. Aynı olgu, gözlemcinin referans sistemine bağlı olarak iki farklı tanımları var gibi görünebilir.

Modern fizik, klasik fizik ile tanımlanamayan olayları açıklamak üzere ortaya atılmış teorilerin tümüdür. Einstein'ın özel görelilik kuramından, Max Planck'ın kara cisim ışıması kuramına; Schrödinger'in kedisinden, kuark ve bozonlara kadar her şey modern fizik adı altında buluşur.

Lorentz faktörü veya Lorentz terimi bir cismin herhangi bir hıza sahip olmadığı durumla bir hıza sahip olması sırasında kütle, zaman ve uzay ölçümlerinde oluşacak ölçüm farklılıklarını açıklayan niceliktir. Lorentz faktörü, referans çerçeveleri arasında dönüşüm yapılabilmesini sağlayan Lorentz dönüşümünden doğar. Faktör, Lorentz elektrodinamiği içindeki erken görünümü yüzünden Hollandalı fizikçi Hendrik Lorentz adına ithaf edilmiştir.

<span class="mw-page-title-main">Işıktan hızlı hareket</span>

Astronomide, ışıktan hızlı hareket bazı radyo galaksilerin, kuasarların ve yakın zamanda bazı galaktik kaynaklarda denilen mikrokuasarlarda görülen görünüşte ışıktan daha hızlı hareket olduğudur Bu kaynakların hepsi yüksek hızlarda kütlesinin fırlamasından sorumlu bir kara delik içerdiği düşünülmektedir.

Relativistik Işıma doppler ışıması ya da doppler artması olarak da bilinir. Maddenin ışık hızına yakın bir hızda yayılan parlaklığını açıklayan bir işlemdir. Astronomi kaynaklarında, katılımlarla büyüyen sıkışık madde kökeninden gelen Relativistik jet plazmalarında Relativistik ışınma zıt yönlü meydana gelir. Katılımlarla büyüyen sıkışık madde ve Relativistik jetler sırayla gözlemlenmiş olan olayları açıklamayı hatırlatıyor. X ışını ikilisi, gama ışın patlaması ve etkin çekirdekli galaksi.(Kuasar katılımlarla büyüyen maddeyle ilişkilendirilebilir ama sadece etkin çekirdekli galaksinin bir çeşidi olarak düşünülürse.) Işıma, herhangi bir şeyin parlaklığını etkiler. Mesela deniz feneri ışık kaynağının görünümünü etkiler. Işık kaynağı gemiye görünmez ya da sönük gelir eğer ışık kaynağı gemiye doğru ışımıyorsa ki o zaman çok parlak bir ışık olarak gemiden gözükür. Bu deniz feneri etkisi, Relativistik ışımada hareket yönünün ne kadar önemli olduğunu örnekler(gözlemciye göre). Eğer elektromanyetik radyasyon yayan az miktarda gaz gözlemciye doğru hareket ediyorsa durgun halinden daha parlak gelecektir. Eğer gaz gözlemciye doğru hareket etmiyorsa durgun halinden daha sönük gelecektir. Bu deniz feneri etkisinin önemi jetler tarafından tespit edilmiştir. M87 adlı galaksideki ikiz jetlerden biri dünyaya doğru diğeri ise ona zıt yönde giderken ışımanın nasıl görünümlerini etkilediğini gösterir. M87 nin dünyaya doğru hareket eden jeti teleskopla rahatça görülebilir ve ışıma yüzünden çok daha parlaktır. M87 deki diğer jet ise ışıma nedeniyle görünmeyecek kadar sönüktür. 3C31 M87 den daha farklıdır çünkü her iki jet de görüş açımıza neredeyse 90 derece açıdadır ve bu nedenle aynı yoğunlukta ışınlamaya maruz kalır. M87 dekinin aksine, 3C31 deki her iki jet de gözükür. Relativistik olarak hareket eden cisimler birçok fiziksel nedenden dolayı ışıma yapar. Işığın sapması, cismin hareket yönü boyunca çok sayıda fotonun yayılmasına neden olur. Doppler etkisi fotonların enerjisini değiştirir. Son olarak, cisim tarafından yayılan fotonların hareketi boyunca ölçülen zaman aralığı ile dünyada gözlemci tarafından ölçülen zaman farklıdır. Bunun nedeni ise, zaman genişlemesi ve fotonun geliş zamanı etkisinden dolayıdır. Tüm bu etkiler, Relativistik doppler etkisini tanımlayan denklemler tarafından belirtilen hareket eden cismin parlaklığını gösterir.

Elektromanyetik kütle başlangıçta, elektromanyetik alanın ya da öz-enerjinin ne kadar olduğunu gösteren, yüklü parçacıkların kütlesine katkıda bulunan, bir klasik mekanik kavramıydı. İlk defa 1881 yılında J.J. Thomson tarafından elde edildi ve bir süreliğine tek başına eylemsizlik kütlesinin dinamik açıklaması olarak da kabul edildi. Bugün, kütle, momentum, hız ve tüm enerji çeşitlerinin ilişkileri, elektromanyetik enerji de dahil, Albert Einstein'ın özel görelilik ve kütle-enerji eşdeğerliği bazında incelenmektedir. Temel parçacıkların kütle nedeni olarak, göreceli Standart Model çerçevesinde Higgs mekanizması halen kullanılmaktadır. Ayrıca, yüklü parçacıkların elektromanyetik kütle ve iç enerjileri ile ilgili problemler hala araştırılmaktadır.

Yerçekimi hızı, yerçekiminin klasik teorilerinde yerçekimi hızı, yerçekimsel alanın yayılmasıyla değişen hız olarak tanımlanmıştır. Yerçekimi hızı, enerji dağılımındaki ve maddenin momentumundaki değişimin belli bir uzaklıkta, ürettiği yerçekimsel alanda sonradan ortaya çıkan bir değişiklikle sonuçlandığı hızdır. Fiziksel olarak daha doğru bir yaklaşımla, "yerçekimi hızı" yerçekimsel dalganın hızını kasteder.

<span class="mw-page-title-main">Göreli Doppler etkisi</span>

Relativistik Doppler Etkisi ya da Göreli Doppler etkisi, adını ünlü bilim insanı ve matematikçi Christian Andreas Doppler'dan almakta olup, kısaca dalga özelliği gösteren herhangi bir fiziksel varlığın frekans dalga boyu Dalga boyu, bir dalga görüntüsünün tekrarlanan birimleri arasındaki mesafedir. Yaygın olarak Yunanca lamda (λ) harfi ile gösterilmektedir. hareketli bir gözlemci tarafından farklı zaman ve/veya konumlarda farklı algılanması olayıdır. Bu da göreli olduğunu belirtir. Herhangi bir A konumundan B konumuna gitmek icin fiziksel bir dalga ortamı'na ihtiyaç duyan dalgalar icin Doppler Etkisi hesaplamaları yapılırken, dalga kaynağı ve gözlemcinin birbirine göre konum, yön ve hızlarının yanında dalganın içinde veya üzerinde hareket ettiği dalga ortamının da fiziksel yapısı dikkate alınmak zorundadır. Eğer söz konusu dalga herhangi bir A konumundan B konumuna gitmek için fiziksel bir dalga ortamına ihtiyaç duymuyor ise Doppler Etkisi hesaplamalarında sadece dalga kaynağının ve gözlemcinin birbirine göre birim zamandaki konumlarının değerlendirilmesi yeterlidir. Göreli doppler olayı değişikliği olduğu frekansa ışık kaynağının göreceli hareketine göredir ve, Göreli Doppler etkisi relativistik olmayan farklı Doppler etkisi denklemleri dahil olarak zaman genişlemesi etkisini özel görelilik ve referans noktası olarak yayılma ortamı dahil değildir. Lorentz simetri gözlenen frekanslar için toplam farkı anlatır.

<span class="mw-page-title-main">Görelilik teorisi</span> zamanın göreceli olduğunu söyleyen teori

Görelilik teorisi, Albert Einstein'ın çalışmaları sonucu önerilen ve yayınlanan, özel görelilik ve genel görelilik adlarında birbirleriyle ilişkili iki teorisini kapsar. Özel görelilik, yer çekiminin yokluğunda tüm fiziksel fenomenler için geçerlidir. Genel görelilik, yer çekimi yasasını ve bu yasanın diğer doğa kuvvetleri ile ilişkisini açıklar. Astronomi de dahil olmak üzere kozmolojik ve astrofiziksel alem için geçerlidir.