İçeriğe atla

Hızlı prototipleme

Hızlı prototipleme, bilgisayarda hazırlanan üç boyutlu CAD çizimlerinden direkt olarak elle tutulur fiziksel modeller elde etmemizi sağlayan imalat teknolojisidir. Hızlı prototipleme cihazları vasıtasıyla bilgisayarda çizimi yapılmış her türlü ürünün birebir modelini saatler içerisinde elde etme imkânı doğmuştur. Hızlı prototipleme cihazları kendi içerisinde farklılıklar göstermekle beraber prensipleri aynıdır. Bu yöntemde fiziksel modeller tabandan başlayarak katman katman yüzeylerin üst üste eklenmesiyle oluşturulur..

Amacı

Hızlı prototipleme teknolojileri ürün geliştirme süreçlerinde yaşanan problemlere çözümler getirmektedir. Bilgisayarda çizilen tasarımların seri üretime geçmeden önce prototiplerinin hazırlanması ve bu prototiplerin çeşitli testlerden geçmesi gerekmektedir. Bu süreç geleneksel yöntemlerle yapıldığında günler hatta haftalarca sürebilir. Hızlı prototipleme ile bu süreç saatler içerisinde gerçekleştirilir ve elde edilen prototipler hem görsel hem de fonksiyonel açıdan test edilebilirler. Olası tasarım değişikliklerine bu prototipler üzerinden karar verilerek gerekli değişiklikler süratle uygulanır.

Uygulama alanları

  • Ürünün görsel kontrolü yapılabilir ve olası form hataları gözlemlenebilir.
  • Birden fazla komponent içeren ürünlerin birbirlerine geçme detayları ve parçaların uyumu kontrol edilebilir.
  • Mekanizmaların çalışabilirliği test edilebilir.
  • Çok parçalı bir montaj parçası tek seferde üretilip çalıştırılabilir.
  • Hızlı prototip modelleri kalıp yapımında master model olarak kullanılabilir.
  • Hızlı prototip modelleri hassas döküm işlemi için kullanılabilir.

Teknik yeterlilikleri

Bilgisayar çizimi olan her şeyi bu yöntem ile üretebilir. Parçaların hacmi, et kalınlığı veya formu bir sınırlama oluşturmaz. Malzeme konusunda ihtiyaca göre değişik malzemelerden değişik renklerde üretim yapmak mümkündür. Esnek veya rigid, şeffaf veya mat parçalar üretebilir. Parçalar istenildiğinde kolayca boyanabilir ve birebir ürün üzerinde de kullanılabilirler. Kesilebilir, zımparalanabilir ve birbirlerine yapıştırılabilirler. Termal ve mekanik özellikleri değişken malzemelerden geniş bir üretim seçeneği sunmaktır.

Hızlı prototipleme teknolojileri

Polyjet

Bu teknikte oda sıcaklığında sıvı halde bulunan fotopolimer reçine 2 eksende bilgisayar destekli üretim (CAM) yazılımı ile hareket eden enjeksiyon bloğuna yürütülür. Blok üzerinde cihazlara göre değişen adetlerde (4 veya 8 adet) enjeksiyon kafası bulunmaktadır. Her bir enjeksiyon kafası üzerindeki 16 mikron çapındaki 1536 memeden malzeme püskürtülerek boş bir tepsinin üzerine bir katman oluşturulur. Püskürtülen hammadde morötesi (ultraviyole) lambalar vasıtasıyla tahliye edildiği anda dondurularak katılaştırılır. Her katmanda tepsi bir adım aşağıya iner ve katmanlar halinde parça inşa edilir. Enjeksiyon kafalarından yarısı parçayı oluşturan malzemeyi püskürtürken diğer yarısı da destek görevi görecek malzemeyi püskürtür. Üretim tamamlandığında parça tepsiden sökülür ve destek malzemesi parçadan mekanik yöntemlerle ayrıştırılır.

Polyjet sistemlerinde kullanılan hammadde bu yönteme özgü fotopolimer reçinelerdir. Termal ve mekanik özellikleri birbirinden oldukça farklı olan bir dizi malzeme seçeneğine sahiptir.

Bu teknoloji 1990'lı yılların sonunda Objet Geometries firması tarafından geliştirilmiştir.

Fused deposition modeling (FDM)

FDM tekniğinde şerit halindeki plastik hammadde ekstrüzyon kafasına iletilir. Burada malzeme ısıtılarak eriyik hale getirilir. Ekstrüzyon kafası 2 eksende bilgisayar destekli üretim (CAM) yazılımı ile hareket edebilen bir yapıdadır ve eriyik malzemeyi damlalar halinde boş bir tepsiye püskürterek parçayı oluşturacak ilk katmanı oluşturur. Her katmanda tepsi bir adım aşağıya iner ve böylece parça katmanlar halinde inşa edelir. Püskürtülen malzeme anında katılaşır ve tüm katmanların inşası tamamlandığında parça tepsiden sökülür. İnşa sırasında destek görevi gören bir yapı oluşur ve üretim tamamlandıktan sonra bu yapı parçadan sökülür.

İnşa malzemesi olarak ABS ve polikarbonat kullanılır. Destek malzemesi mekanik yöntemlerle parçadan sökülmekle birlikte son yıllarda geliştirilen yeni malzemeler suda çözünebilir niteliktedirler.

FDM teknolojisi 1980'li yılların sonunda S. Scott Crump geliştirilmiş, ilk ticari cihazı 1991 yılında piyasaya sürülmüştür.

Selective laser sintering (SLS)

SLS teknolojisinde toz halinde bulunan plastik malzeme bilgisayar destekli üretim (CAM) yazılımı ile hareket eden lazer ışınıyla taranır. Taranan bölgelerdeki malzeme sinterlenerek birbirine kaynaşır ve parçanın ilk katmanı oluşur. İkinci toz katmanı ilkinin üzerine sıvanır ve sinterleme işlemi sırasıyla devam ederek parçanın üretilmesi sağlanır. Katmanlar tamamlandıktan sonra parça toz havuzundan çıkarılır. Bu teknolojide destek yapısı kullanılmaz.

İnşa malzemesi olarak çoğunlukla poliamid kullanılır. Ancak son yıllardaki gelişmeler sonucu seramik ve metal tozları kullanılabilmektedir.

Bu teknoloji 1980'li yılların ortalarında Dr. Carl Deckard tarafından geliştirilmiştir.

Stereolithography (SLA)

Stereolithography tekniği oda sıcaklığına sıvı halde bulunan fotopolimer reçine tabakasının noktasal bir morötesi (ultraviyole) lazer ışını vasıtasıyla belirli bölgelerinin kürleştirilmesi prensibine dayanır. Bilgisayar destekli üretim (CAM) yazılımı ile hareket eden lazer ışını reçine tabakası üzerinde parça geometrisini tarayarak ilk katmanı oluşturur. İkinci reçine katmanı ilkinin üzerine sıvanır ve kürleştirme işlemi sırasıyla devam ederek parçanın üretilmesi sağlanır. Katmanlar tamamlandıktan sonra parça reçine havuzundan çıkarılır. Parça oluşurken destek görevi gören yapı parçadan mekanik olarak ayrıştırılır.

Stereolithography teknolojisinde hammadde olarak bu yönteme özgü fotopolimer reçineler kullanılır. Termal ve mekanik özellikleri birbirinden oldukça farklı olan bir dizi malzeme seçeneğine sahiptir. Bazı malzemeler ilave kürleştirme gerektirebilir ve bunlar ultraviyole banyosunda ikincil bir işleme tabi tutulmaktadırlar.

Elektron ışınlı ergitme (EBM)

EBM ile üretilmiş rutenyum çubuk. Teknik sayesinde %99.99 saflıkta üretilebilmiştir.

Elektron ışınlı ergitme[1] (EBM) (ingilizce: electron beam melting) prosesi toz halindeki metallleri ısıtarak ergitme ve birleştirme prensibine dayanır. Bu yönüyle ısıtarak toz bağlama (SLS) metodu ile benzerlik gösterir.[2] 1000oC sıcaklıkta, vakumda bulunan hareketli tabla üzerine yaklaşık 0,1mm kalınlığında tabaka oluşturacak şekilde serilen metal tozları, bilgisayar kontrollü elektron bombardımanına tutulur.[3] 2800oC elektron kaynağından gelen elektronlar hızlandırıldıktan sonra yarım ışık hızı büyüklükte bir hız ile toza çarpar. Bu hız elektronların kinetik enerjisi metali ergitmek için yeterlidir. Ergitme bittikten sonra Tabla dikey düzlemde aşağı kaydırılır, eritilecek yeni tabaka toz serilir ve proses tüm parçanın üretimin sonuna kadar tekrarlanır.[4]

İletken maddelerde lazer kullanan SLS'ye göre daha verimli olan EBM,[4] gözeneksiz, yoğun parçaların üretilmesi için idealdir.[5] Ergitme işlemi vakumda gerçekleştiği için nitrat ve oksitlerden arınmış malzeme elde etmek mümkündür.[5] Hassiyet beklenen karmaşık metal parçaların üretimine imkân sağladığı için sağlık sektöründe titanyum alaşımı implantların[6] ve havacılık sektöründeki parçaların[7] üretime imkân sağlar.

2001 yılında İsveçli Arcam AB tarafından ticarileştirilen teknik, firma tarafından 1995 yılından beridir Chalmers Teknik Üniversitesi ile ortaklaşa geliştirilmektedir.[8]

Hızlı prototipleme malzemeleri

Hızlı prototipleme teknolojileri bir dizi plastik ve metal malzemeleri hammadde olarak kullanmaktadır. Bunlar ABS, PP, PC, fotopolimer, PA'dir.

Kaynakça

Notlar

  1. ^ Tekniğin yerleşmiş türkçe ismi bulunmamaktadır.
  2. ^ "Hızlı Prototipleme Teknolojileri". 7 Mart 2009 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Nisan 2010. 
  3. ^ Chua, a.g.e., s.215
  4. ^ a b Liou, a.g.e., s.286
  5. ^ a b Liou, a.g.e., s.287
  6. ^ "Arcam A1 - The future in implant manufacturing". 11 Eylül 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Nisan 2010. 
  7. ^ "Arcam A2 - Additive Manufacturing for the Aerospace and Defense industries". 5 Temmuz 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Nisan 2010. 
  8. ^ Chua, a.g.e., s.214

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Seramik</span> ısı etkisiyle hazırlanan inorganik, metalik olmayan katı

Seramik iyonik veya kovalent bağlara sahip metal ve metal olmayan inorganik bileşik içeren katı bir malzemedir. Yaygın kullanım örnekleri çanak-çömlek, porselen ve tuğladır.

Metalurji ve malzeme mühendisliği günümüzde kimya, makine, inşaat, uzay-uçak, elektrik-elektronik, çevre ve tıp alanlarına yayılmış çok disiplinli bir bilim ve teknoloji dalı olarak gelişmesini sürdürmekte ve verimlilik, enerji ve hammadde üçlüsü ile uyum içinde olan üretim süreçlerinin sektöre kazandırılmasında önemli rol oynamaktadır. Son yıllarda metalurji ve malzeme mühendisliğindeki gelişmeler, genel olarak metalurjik proseslerin optimizasyonu, sayısal simülasyon ve modelleme üzerine yoğunlaşırken, çevresel metalurji uygulamalarında da, çevre kirliliğine yol açmayacak nitelikte atılabilir atık üretmek,, demetalize edilmiş çözeltiyi kullanılabilir su halinde sisteme geri döndürme şeklinde atık su demetalizasyonu, ikincil kaynakların yeniden değerlendirilmesine yönelik reaktör ve proseslerin tasarımı gibi konular öne çıkmaktadır.

<span class="mw-page-title-main">Makine mühendisliği</span> Mühendislik

Makine mühendisliği, mekanik sistemlerin tasarım, analiz, imalat ve bakımı için mühendislik fiziği ve mühendislik matematiği ilkelerini malzeme bilimi ile birleştiren bir mühendislik dalıdır.

<span class="mw-page-title-main">Plastik enjeksiyon</span>

Plastik enjeksiyon, temelde kapalı bir kalıbın içine plastik malzemenin eriyik sıcaklığının üstündeki bir sıcaklık aralığında yüksek hızda yolluk girişinden kalıp gözüne hızlı bir şekilde enjekte edilmesi sonrası, ütüleme fazı ve tutma fazı ile parçanın boyut ve görsel toleranslarının kabul edilebilir seviyeye getirdikten sonra plastiğin kalıptan çıkma sıcaklığının altına getirilerek kalıptan çıkarılması prensibine dayanan bir plastik parça imalat yöntemidir. Seri üretime uygun olması sebebiyle, birçok sektörde oldukça fazla kullanılan bir üretim yöntemidir. Bu metot ile en küçük komponentlerden, otomotiv, savunma sanayi ürünlerine kadar çok çeşitli ebat ve kategorilerde plastik parçalar imal edilebilir.

<span class="mw-page-title-main">Tuğla</span> yapı malzemesi

Tuğla, harç gibi karışımlar ile birbirine tutturularak duvar inşasında kullanılan, pişmiş veya kurutulmuş kil bazlı topraktan elde edilen ses ve ısı yalıtımı için ana yapı malzemelerindendir. Çoğunlukla dikdörtgenler prizması şeklinde yapılmaktadır. Ev ve iş yeri yapımında, birden fazla alanda kullanılır. Örnek: Duvar oluşturma, havalandırma, soba ve ocak bacaları.

<span class="mw-page-title-main">Malzeme bilimi</span> yeni malzemelerin keşfi ve tasarımı ile ilgilenen disiplinlerarası alan; öncelikli olarak katıların fiziksel ve kimyasal özellikleriyle ilgilidir

Malzeme bilimi, malzemelerin yapı ve özelliklerini inceleyen, yeni malzemelerin üretilmesini veya sentezlenmesini de içine alan disiplinlerarası bir bilim dalıdır.

<span class="mw-page-title-main">HDPE</span> polietilen malzeme

HDPE, petrolden elde edilen, yüksek yoğunluklu polietilen malzemedir. İsmi İngilizce karşılığı olan "High Density Polyethylene" teriminin kısaltmasından gelmektedir. Sanayi ve imalat sektöründe genelde bu isim kullanılmaktadır. Yaklaşık olarak, 1.75 kg. petrolden, 1 kg. HDPE hammadde elde edilir.

Silikon kalıplama, kalıp malzemesi olarak silikonun kullanıldığı, kalıplarının döküm yöntemiyle imal edildiği bir üretim yöntemidir. 1970'li yıllardan bu yana düşük adetli seri üretim ve model kopyalama amacıyla kullanılmaktadır. Çok hızlı bir şekilde kalıp üretimi gerçekleştiğinden test amaçlı prototip imalat yöntemi olarak da kullanılmaktadır.

Karbon elyaf takviyeli plastik veya karbon elyaf takviyeli polimer sağlam, hafif ve pahalı bir çeşit kompozit malzeme, elyaf takviyeli polimerdir. Cam elyafı'ına benzer şekilde bu kompozit yapıya mukavemet veren malzemeye karbon elyafı denilir. Polimer için en çok epoksi kullanılsa da polyester, vinil ester ya da naylon gibi başka maddelerin de kullanıldığı görülebilir. Kevlar veya alüminyum yapılarında karbon, cam gibi diğer güçlendiricilerle birlikte kullanılır. Grafit takviyeli polimer ya da Grafit elyaf takviyeli polimer (GFRP) de karbon elyafıyla takviyeli bu tür yapıları nitelemek için de kullanılır. Cam elyaf takviyeli malzemelerin de GFRP olarak tanımlanabilmesi ve karışıklık yaşanması nedeniyle bu isimlendirme çok sık kullanılmaz. Bazı ürün tanıtımlarında ise kısaca grafit elyafı denilir.

<span class="mw-page-title-main">Seramik mühendisliği</span> Seramik mühendisliği inorganik, metalik olmayan malzemelerden nesneleri oluşturma bilim ve teknolojisidir.

Seramik mühendisliği inorganik, metalik olmayan malzemelerden nesneleri oluşturma bilim ve teknolojisidir. Bu, ya ısıl hareketle ya da yüksek saflıktaki kimyasal çözeltilerinden çökelme reaksiyonları kullanılarak düşük sıcaklıklarda sağlanır. Bu tanım, hammaddelerin saflaştırılması, söz konusu kimyasal bileşiklerin üretimi, ürüne dönüştürülmesi, yapı kompozisyon ve özelliklerinin incelenmesi çalışmalarını içerir.

<span class="mw-page-title-main">Üç boyutlu baskı</span>

Üç boyutlu baskı 3 boyutlu olarak tasarlanmış sanal bir nesnenin polimer, kompozit, reçine gibi malzemelerden ısıl veya kimyasal işlemden geçirilerek üretilme işlemidir.

<span class="mw-page-title-main">Metal işçiliği</span>

Metal işleme kullanışlı nesneler, parçalar, montajlar ve büyük ölçekli yapılar oluşturmak için metalleri şekillendirme sürecidir. Kelime olarak, devasa gemiler, binalar ve köprü'lerden hassas motor parçalarına ve narin mücevher'lere kadar her ölçekte nesne üretmek için çok çeşitli süreçleri, becerileri ve araçları kapsar.

<span class="mw-page-title-main">Döküm</span>

Döküm, metal işçiliği ve mücevher yapımında, sıvı bir metalin amaçlanan şeklin negatif bir izlenimini içeren bir kalıba döküldüğü ve metalurji ve malzeme mühendisliğinin doğrudan iş kolu olan oldukça önemli bir prosestir. Metal, havşa adı verilen içi boş bir kanaldan kalıba dökülür. Daha sonra metal ve kalıp soğutulur ve metal kısım (döküm) çıkarılır. Döküm genellikle diğer yöntemlerle yapılması zor veya ekonomik olmayan karmaşık geometriler üretmek için kullanılır.

<span class="mw-page-title-main">Mikro hücresel plastik</span>

Mikrohücresel köpük olarak da bilinen mikro hücreli plastikler 50 mikrondan küçük milyarlarca küçük baloncuk içeren özel üretilmiş bir plastik şeklidir. Bu plastik türü gaz kabarcıklarının homojen bir şekilde düzenlenmesine neden olmak için "termodinamik kararsızlık fenomenine" dayanarak gazın yüksek basınç altında çeşitli polimerlere çözülmesiyle oluşturulur aksi takdirde çekirdeklenme olarak bilinir. Asıl amacı mekanik özellikleri korurken malzeme kullanımını azaltmaktı. Bu köpüklerdeki ana varyans odası onları oluşturmak için kullanılan gazdır; bitmiş ürünün yoğunluğu kullanılan gaza göre belirlenir. Kullanılan gaza bağlı olarak köpüğün yoğunluğu önceden işlenmiş plastiğin yoğunluğu % 5 ila % 99 arasında olabilir. Köpüğün son şekline ve daha sonra kalıplama işlemine daha fazla odaklanan tasarım parametreleri kullanılacak kalıp veya kalıp tipinin yanı sıra bu malzemeyi köpük olarak sınıflandıran kabarcıkların veya hücrelerin boyutlarını içerir. Hücrelerin boyutu ışığın dalga boyuna yakın olduğundan sıradan bir gözlemciye göre bu köpük, katı, açık renkli bir plastik görünümünü korur.

Plastik kaynak, yarı bitmiş plastik malzemeler için kaynaktır ve ISO 472'de, malzemelerin yumuşatılmış yüzeylerini genellikle ısı yardımıyla birleştirme işlemi olarak tanımlanır. Termoplastiklerin kaynağı yüzey hazırlığı, ısı ve basınç uygulaması ve soğutma olmak üzere üç ardışık aşamada gerçekleştirilir. Yarı mamul plastik malzemelerin birleştirilmesi için çok sayıda kaynak yöntemi geliştirilmiştir.

<span class="mw-page-title-main">Şişirmeli kalıplama</span>

Şişirmeli kalıplama içi boş plastik parçaların yapımı ve birleştirilmesi için kullanılan bir üretim sürecidir. Cam şişeler veya diğer içi boş şekiller yapmak için de bu işlem kullanılır.

Konveyör sistemleri, nesneleri bir konumdan diğerine taşıyan, özellikle üretim merkezlerinde sıklıkla kullanılan, mekanik taşıma araçlarıdır. Konveyörler, özellikle ağır veya hacimli nesnelerin taşınmasını içeren uygulamalarda kullanışlıdır. Konveyör sistemlerinin çok çeşitli malzemeleri hızlı ve verimli bir şekilde taşınmasını sağlaması, onları malzeme taşıma ve ambalaj endüstrilerinde çok popüler kılar. Ayrıca, ürün / çanta teslimatları için süpermarketler ve havalimanlarında sıklıkla bulunurlar. Birçok tür taşıma sistemi mevcuttur ve farklı endüstrilerin çeşitli ihtiyaçlarına göre kullanılmaktadır.

Seçici lazer sinterleme (SLS), CO2 lazeri kullanılarak metal ya da alaşım tozlarının yanı sıra, polistren gibi plastik malzemeler, poliamid (naylon) veya seramik malzemelerin seçici olarak sinterlenmesiyle bir ürünün ilk halini oluşturan eklemeli bir üretim sürecidir.

<span class="mw-page-title-main">Cam-seramik</span>

Cam-seramikler (CS'ler), bir camın kristalleştirilmesiyle elde edilmektedir. Camların özellikleriyle kristallerin faydalarının birleşiminin sonucu olarak ortaya camdan daha verimli bir yapı çıkar. Cam-seramikler, uygun bileşimdeki camların ısıl işlem uygulanmasıyla oluşur. Bu nedenle daha düşük enerjiye sahip kristalli yapı oluşur. Kontrollü kristalizasyona tabi tutulduğunda oluşan ince taneli polikristal malzemeler cam- seramik malzemeler olarak adlandırılmaktadır. Holand ve Beall (2012) cam-seramik malzemeleri kimyasal bileşimlerine göre sınıflandırmaktadır. Bu sınıflandırma ; alkali ve toprak alkali silikatlar, alümino-silikatlar, florosilikatlar, silikofosfatlar, demir silikatlar ve fosfatları kapsamaktadır. Cam-seramiklerin bir başka sınıflandırması ise cam-seramikleri oksit ve oksit olmayan kategorilere ayırmaktadır.. Oksit cam seramikler, silikat, fosfat, borat ve GeO2 bazlı malzemeleri içermektedir.

<span class="mw-page-title-main">Termoform</span>

Termoform', plastik bir levhanın plastiğin esneyebileceği bir şekillendirme sıcaklığına ısıtıldığı, bir kalıpta belirli bir şekle getirildiği ve kullanılabilir bir ürün oluşturmak için kesildiği bir üretim sürecidir. Levha veya daha ince ölçüler ve belirli malzeme türlerine atıfta bulunulduğunda "film" malzeme, bir kalıbın üzerine yerleştirilip bitmiş şekle soğutulmasına imkan verecek kadar yüksek sıcaklığa kadar bir fırında ısıtılır. Basitleştirilmiş versiyonu vakum şekillendirmedir.