İçeriğe atla

Hissedilir ısı

Hissedilir ısı, bir cisim veya termodinamik sistem tarafından değiştirilen ısı olup, burada ısı değişimi cismin veya sistemin sıcaklığını ve cismin veya sistemin bazı makroskobik değişkenlerini değiştirir, ancak hacim veya basınç gibi cisim veya sistemin diğer bazı makroskopik değişkenlerini değiştirmeden bırakır.[1][2][3][4]

Kullanım

Bu terim, gizli olarak değiştirilen ısı miktarı olan gizli ısı'nın aksine kullanılır yani sıcaklık değişimi olmadan meydana gelir. Örneğin buzun erimesi gibi bir faz değişiminde, buz ve sıvıyı içeren sistemin sıcaklığı buzun tamamı eriyene kadar sabit kalır. Gizli ve hissedilebilir terimleri birbiriyle ilişkilidir.

Bir termodinamik sürecin hissedilebilir ısısı, cismin kütlesinin (m), özgül ısı kapasitesi (c) ve sıcaklık değişimi () ile çarpımı olarak hesaplanabilir:

Joule hissedilir ısıyı termometre tarafından ölçülen enerji olarak tanımladı

Hissedilir ısı ve gizli ısı enerjinin özel formları değildir. Daha ziyade, bir malzeme veya termodinamik sistem üzerindeki etkileri açısından belirtilen koşullar altında ısı alışverişini tanımlarlar.

Termodinamiğin temellerini açıklayan ilk bilim insanlarının yazılarında, hissedilir ısının kalorimetri alanında anlamı netti. James Prescott Joule 1847'de bunu termometrenin gösterdiği enerji olarak tanımladı.[5]

Doğadaki enerji transferinde birçok süreçte hem hissedilir hem de gizli ısılar vardır. Gizli ısı, sabit sıcaklıkta ölçülen durum değişiklikleriyle, özellikle atmosferdeki su buharı’nın çoğunlukla buharlaşma ve yoğunlaşma gibi faz değişimleriyle ilişkilidir; oysa hissedilir ısı atmosfer sıcaklığını doğrudan etkiler.

Meteorolojide 'hissedilir ısı akı' terimi, Dünya yüzeyinden atmosfere kadar olan iletken ısı akı’sı anlamındadır.[6] Dünyanın yüzey enerji bütçesinin önemli bir bileşeni hissedilir ısıdır. Hissedilir ısı akışı genellikle girdap kovaryans yöntemiyle ölçülür.

Sürekli ısı alışverişinde sistem zamana göre kararlı, uzaya göre ise geçici durumda çalışır. Bu nedenle, ısı eşanjörlerinin boyutlandırılması için genellikle sıcaklık farklarının logaritmik ortalamasını (LMTD) kullanırız:

veya :

  • K genel ısı değişim katsayısıdır
  • A alandır (m2 olarak)
  • P ısıl güç olup P = Q / t formülüyle hesaplanır
  • LMTD sıcaklık farklarının logaritmik ortalamasıdır:

ile:

  • ∆TE : sıvı giriş sıcaklığındaki fark (karşı akım eşanjörü için geçerlidir)
  • ∆TS : sıvı çıkış sıcaklığındaki fark (karşı akım eşanjörü için geçerlidir)

Katıların ısıl kapasitesi

Katıların ısı kapasitesi Dulong-Petit Yasası ile tanımlanır.

Ayrıca bakınız

Kaynakça

  1. ^ Partington, J.R. (1949). An Advanced Treatise on Physical Chemistry, Volume 1, Fundamental Principles. The Properties of Gases, Longmans, Green, and Co., London, pages 155-157.
  2. ^ Prigogine, I., Defay, R. (1950/1954). Chemical Thermodynamics, Longmans, Green & Co, London, pages 22-23.
  3. ^ Adkins, C.J. (1975). Equilibrium Thermodynamics, second edition, McGraw-Hill, London, 0-07-084057-1, Section 3.6, pages 43-46.
  4. ^ Landsberg, P.T. (1978). Thermodynamics and Statistical Mechanics, Oxford University Press, Oxford, 0-19-851142-6, page 11.
  5. ^ J. P. Joule (1884), The Scientific Paper of James Prescott Joule, Londra Fizik Topluluğu, s. 274, Bu hipotezlerin her ikisinin de geçerli bulunacağına inanma eğilimindeyim; bazı durumlarda, özellikle hissedilir ısı durumunda veya termometrenin gösterdiği gibi, ısının, içinde uyarıldığı cisimlerin parçacıklarının yaşam kuvvetinden oluştuğu görülecektir; , Madde, Yaşam Kuvveti ve Isı Üzerine Ders. 5 Mayıs ve and 12 mayıs 1847
  6. ^ Stull, R.B. (2000). Meteorology for Scientists and Engineers, ikinci baskı, Brooks/Cole, Belmont CA, 978-0-534-37214-9, sayfa 57.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Enerji</span> bir sistemin iş yapabilme yeteneğinin ölçüsü

Fizikte enerji, bir cisime veya fiziksel bir sisteme aktarılan, işin performansında ve ısı ve ışık biçiminde tanınabilen niceliksel özelliktir. Enerji korunan bir miktardır; Enerjinin korunumu yasası, enerjinin istenen biçime dönüştürülebileceğini ancak yaratılamayacağını veya yok edilemeyeceğini belirtir. Uluslararası Birimler Sisteminde (SI) enerjinin ölçü birimi joule'dür (J).

<span class="mw-page-title-main">Termodinamik</span> enerji bilimi

Termodinamik; ısı, iş, sıcaklık ve enerji arasındaki ilişki ile ilgilenen bilim dalıdır. Basit bir ifadeyle termodinamik, enerjinin bir yerden başka bir yere ve bir biçimden başka bir biçime transferi ile ilgilenir. Bu süreçteki anahtar kavram, ısının, belirli bir mekanik işe denk gelen bir enerji biçimi olmasıdır.

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

<span class="mw-page-title-main">Isı</span> belirli sıcaklıktaki bir sistemin sınırlarından, daha düşük sıcaklıktaki bir sisteme, sıcaklık farkı nedeniyle geçen enerji

Isı, belirli sıcaklıktaki bir sistemin sınırlarından, daha düşük sıcaklıktaki bir sisteme, sıcaklık farkı nedeniyle geçen enerjidir. Isı, parçacıkların 40.000-400.000 hz./s titreşmesi ile oluşur. Isı da iş gibi bir enerji akışı biçimidir. Isı sistem sınırlarında ve geçiş durumunda iken belirlenebilir. Isı sistemin bir durum fonksiyonu değildir.

<span class="mw-page-title-main">Termodinamik çevrim</span>

Termodinamik çevrim, bir veya daha çok hal değişimi gerçekleştiren, veya enerji üreterek veya enerjiyi transfer ederek ilk haline dönen bir çalışma akışkanı içeren çevrimlerdir. Tabloda termodinamik çevrimlerin listesi verilmiştir.

<span class="mw-page-title-main">Isı sığası</span> bir maddenin sıcaklığını 1 °C değiştirmek için gerekli olan ısı miktarıdır

Isı sığası veya ısı kapasitesi, bir maddenin sıcaklığını 1 °C değiştirmek için gerekli olan ısı miktarıdır. Başka bir ifade ile bir cismin ısısının sıcaklığına göre türevidir. Cismin kütlesi ile öz ısısının çarpımına eşittir (m.c).

<span class="mw-page-title-main">Potansiyel enerji</span> skaler büyüklük

Potansiyel enerji, cisimlerin bir alanda bulundukları fiziksel durumlardan ötürü depoladığı kabul edilen enerjidir. Örneğin yükseğe kaldırılan bir cisim, barajlarda biriken su, sıkıştırılan veya gerilen yay potansiyel enerji depolar. Potansiyel enerji mevcut alandaki konuma veya cisimdeki değişikliğe bağlıdır. EP ya da U ile gösterilir. Birimi diğer enerjiler gibi Joule'dür. (J)

Termodinamiğin(Isıldevinimin) ikinci yasası, izole sistemlerin entropisinin asla azalamayacağını belirtir. Bunun sebebini izole sistemlerin termodinamik dengeden spontane olarak oluşmasıyla açıklar. Buna benzer olarak sürekli çalışan makinelerin ikinci kanunu imkânsızdır.

<span class="mw-page-title-main">Enerjinin korunumu</span>

Enerjinin korunumu yasası, yalıtılmış bir sistemdeki toplam enerjinin değişmeyeceğini söyler. Enerji ne yok edilebilir ne de yoktan var edilebilir, ama enerji türü değişebilir; örneğin, dinamitin patlamasıyla kimyasal enerji kinetik enerjiye dönüşebilir.

<span class="mw-page-title-main">Mutlak sıcaklık</span> mutlak sıcaklık ölçüsü

büyüklüğünün veya mutlak sıcaklık ya da termodinamik sıcaklık olarak tanımlanan büyüklüğünün iki önemli fiziksel sonucu vardır.

<span class="mw-page-title-main">Gibbs serbest enerjisi</span>

Gibbs serbest enerjisi entalpiden, entropi ve mutlak sıcaklığın çarpımının çıkarılmasıyla elde edilen termodinamik bir değişkendir. Genel olarak kimyasal bir reaksiyonun enerji potansiyelinin işe dönüştürülebilmesiyle ilgilidir.

<span class="mw-page-title-main">Esneklik enerjisi</span>

Esneklik enerjisi, bir maddenin veya fiziksel bir sistemin bünyesinde depolanan ve hacmini veya şeklini bozmak için gereken işin potansiyel mekanik enerjidir. Katı mekaniği önceleri, katı cisim ve maddenin anlaşılması için geliştirilmiş bilim dalıdır. Esneklik potansiyel enerjisi eşitliği, mekanik dengenin pozisyonunu hesaplamak için kullanılır. Enerji potansiyeldir ve kinetik enerji gibi başka enerji biçimlerine dönüştürülebilir. Eşitlik matematiksel olarak şöyle gösterilir

Termal enerji, ortam veya sistem sıcaklığı sonucunda ortamdaki veya sistemdeki bir cismin veya maddenin potansiyel ve kinetik enerjileri toplamını ifade eden bir enerji biçimidir. Sistemde sıcaklık olmadığı müddetçe bu niceliği tanımlamak zor ve hatta anlamsız olabilir. Bu durumda herhangi bir termal iş söz konusu değildir.

Kimyada kimyasal enerji, pil, ampul ve hücre gibi bir kimyasal maddenin tepkime esnasındaki değişiminin potansiyelidir. Kimyasal bağ kurma veya koparma sonucu enerji açığa çıkar. Bu enerji bir kimyasal sistem tarafından ya emilir ya da yayılır.

<span class="mw-page-title-main">Kara cisim ışınımı</span> opak ve fiziksel yansıma gerçekleştirmeyen siyah cisimden yayılan ve sabit tutulan tekdüze ısı

Siyah cisim ışıması içinde elektromanyetik ışıma ya da çevresinde termodinamik dengeyi sağlayan ya da siyah cisim tarafından yayılan ve sabit tutulan tekdüze ısıdır. Işıma çok özel bir spektruma ve sadece cismin sıcaklığına bağlı olan bir yoğunluğa sahiptir. Termal ışıma, birçok sıradan obje tarafından kendiliğinden yayılan bir siyah cisim ışıması sayılabilecek türden bir ışımadır. Tamamen yalıtılmış bir termal denge ortamı siyah cisim ışımasını kapsar ve bir boşluk boyunca kendi duvarını yaratarak yayılır, boşluğun etkisi göz ardı edilebilecek kadar küçüktür. Siyah cisim oda sıcaklığında siyah görünür, yaydığı enerjinin çoğu kızılötesidir ve insan gözü ile fark edilemez. Daha yüksek sıcaklıklarda, siyah cisimlerin özkütleleri artarken renkleri de soluk kırmızıdan kör edecek şekilde parlaklığı olan mavi-beyaza dönüşür. Gezegenler ve yıldızlar kendi sistemleri ve siyah cisimler ile termal dengede olmamalarına rağmen, yaydıkları enerji siyah cisim ışımasına en yakın olaydır. Kara delikler siyah cisim olarak sayılabilirler ve kütlelerine bağlı bir sıcaklıkta siyah cisim ışıması yaptıklarına inanılır . Siyah Cisim terimi, ilk olarak Gustav Kirchhoff tarafından 1860 yılında kullanılmıştır.

<span class="mw-page-title-main">Joule genişlemesi</span>

Joule genişlemesi termodinamikte (ısıdevinimsel) geri dönülmez (tersinemez) bir süreçtir. Burada ısısal olarak yalıtılmış bölmeli kabın bir tarafına belli bir hacimde gaz konur, kalan diğer tarafı ise boşaltılmıştır. Kabın ortasındaki engel kaldırılır ve bir taraftaki gaz tüm kaba yayılır.

<span class="mw-page-title-main">Termodinamiğin üçüncü kanunu</span>

Termodinamik'in üçüncü yasası bazen ‘mutlak sıfır sıcaklığında dengede olan sistemlerin özelliklerine ilişkin’ olarak şu şekilde tanımlanır:

Isıl ışınım maddedeki yüklü parçacıkların ısıl hareketiyle meydana gelmiş elektromanyetik ışınımdır. Isısı mutlak sıfırdan büyük olan her madde ısıl ışınım yayar. Isısı mutlak sıfırdan büyük olan maddelerde atomlar arası çarpışmalar, atomların ya da moleküllerin kinetik enerjisinde değişime neden olur.

Gibbs-Helmholtz denklemi Sıcaklık'ın bir fonksiyonu olarak bir sistemin Gibbs enerjisi içindeki değişikliklerini hesaplamak için kullanılan termodinamik denklemdir. Adını Josiah Willard Gibbs ve Hermann von Helmholtz'den almıştır.

Termodinamikte izovolümetrik süreç veya izometrik süreç olarak da adlandırılan izokorik süreç kapalı sistem hacminin sabit kalması demektir. İzokorik bir süreç, kapalı, elastik olmayan bir kabın içeriğinin ısıtılması veya soğutulması ile örneklendirilebilir. Kapalı sistem kabın içeriğinin dışarıya karşı izole olmasıdır. Kap deforme olmaz ve hacmi termodinamik süreç boyunca sabit kalırsa bu bir izokorik süreç örneğidir.