İçeriğe atla

Hipotez testi

Hipotez testi, bir hipotezin doğruluğunun istatistiksel bir güvenilirlik aralığında saptanması için kullanılan yöntem.

Hipotez testleri bir örneklem ortalaması ile bu örneklemin çekilmiş olduğu düşünülen ortalama değer etrafındaki farkın anlamlı olup olmadığını (yani önemli bir fark olup olmadığını) saptayan testlerdir.

Eğer iki ana kütlenin ortalamaları arasındaki fark sınanıyorsa bunlardan çekilen örneklemlerin ortalamaları üzerinde hipotez testleri yapılarak farkın doğru olup olmadığı anlaşılabilir.

Hipotez testleri için temel varsayımlar

  • Örneğe alınan birimler birbirlerinden bağımsız olarak seçilmiş olmalıdırlar.
  • Ana kütle normal dağılıma sahip olmalıdır.
  • İki ana kütle söz konusu ise bunların varyansları eşit olmalıdır.

Hipotez testinin aşamaları

  1. Hipotezlerin oluşturulması nasıl yapacağım?
  2. Anlam düzeyinin (α- alfa) belirlenmesi.
  3. Örnekleme dağılımının belirlenmesi.
  4. Ret alanının ve kritik değerin belirlenmesi.
  5. Karşılaştırmalar, sonuç ve yorum.

Sıfır hipotezi (Ho)[1]

Null, Yokluk Hipotezi, İstatistiksel Hipotez => :Örneklemden elde edilen ortalama ile anakütleye ait ortalamanın farkı "sıfır","0" sayılabilir. Yani anakütle üzerinde yapılan deformasyonların anakütle aritmetik ortalamasını değiştirmeyeceği görüşünü savunur. Bu görüş savunulurken istatistiksel anlamlılık denilen (%99 %97 veya %95) yanılgı payı göz önüne alınır. Zaten yapılan işlemlerden sonra farkın çok küçük de olsa sıfırdan farklı olduğu görülür

Karşıt Hipotez (H1)

Alternatif, Araştırma Hipotezi.:Yani yapılan deformasyonun anakütle aritmetik ortalamasını değiştireceği öngürüsüdür.

Karşılaşılabilecek durumlar

  1. "Ho doğrudur": Hipotez testi sonunda biz doğru olduğunu buluyoruz. Yani "reddedemiyoruz" diyoruz. Reddettiğimizde yapacağımız hatayı biliriz ama kabul ettiğimizde yapacağımız hatayı bilemeyeceğimiz için yorumlarken "reddedemiyoruz" diyoruz. ((1-α) güven katsayısı ile bu çıkardığımız sonuç doğrudur.)
  2. "Ho doğru" olmasına karşın hipotez testi sonunda biz onun yanlış olduğunu zannedip Ho'ı reddediyoruz. (I. tür hata veya α hata)
  3. "H0 hatalı veya yanlıştır": Biz onu doğru reddedemedik. Hata! (II. tür hata veya β hata)
  4. "H0 hatalı veya yanlıştır": Biz onun yanlış olduğunu bulduk; H0'ı reddettik. ((1-β) veya testin gücü ile bu çıkardığımız sonuç doğrudur.

"Güç", bir hipotez testinin isabetliliği için önemli bir kriterdir ve her zaman maksimize edilmek istenir. Güç'ün 1 çıkması o testin ideal olduğunu gösterir ama pratikte "Güç = 1" olan testlere çok nadir rastlanır.

I. Tür - α ve II. Tür - β tipi hatalar bilinçli olarak yapılan hatalardır. Burada bu hataların bilinçli yapılmasının sebebi olaylara bir de tersinden bakma gereksiniminden dolayıdır.

Özetle:

gerçek hatalı
kabuluDoğru karar çıkarımII.Tür hata (β)
reddiI.Tür hata (α)Doğru karar çıkarım

Olasılıklar

α: Hatalı karar, Ho doğru, biz onu yanlış diye reddediyoruz. (I. Tip Hata)

β: Hatalı karar, Ho yanlış, biz onu doğru diye kabul ediyoruz.

(1-α) : Doğru bir Ho hipotezini kabul etmemiz olasılığı olup buna testin güvenilirlik düzeyi denir.

(1-β) : Yanlış bir H0 hipotezini reddetmemiz olasılığı olup buna testin gücü denir.

Hipotez testi yaparken, α ve β hatalarını en aza indirmek için örneklemdeki birim sayısını olabildiğince fazlalaştırmak gerekir. α hatası yapma olasılığı azalırsa β hatası yapma olasılığı artar. İki hatanın olasılığından biri azalırken diğeri artar. Aynı testte hem α hem de β hatası beraber yapılamaz. Hatasız bir test yapmak mümkün değildir. %1,0 doğru karar verilemez. Normal dağılım asimtotik olup x-ekseni ile kesişmediği için çok küçük de olsa bir risk söz konusudur.

Tek Anakütle Ortalaması İçin Test

Burada araştırma sorunu tek bir anakütle parametresi (anakütle ortalaması) hakkındadır. Bu anakütle ortalama değeri tam olarak bilinmemekte ve belirlenen bir hipotez değerde (Mü sıfır diye okunur) olduğu varsayılmaktadır. Hipotez testi anakütle ortalamasına verilen değer hakkındadır. "Sıfır hipotez" değeri bu parametre için belirtilen değerde olduğudur ve yani

Ho : μ = μo

alternatif hipotez ise

Ho : μ <> μo

Bir anakütleden "basit olasılık örnekleme yöntemi" kullanarak "n" örneklem büyüklüğü olan bir örneklem ele geçirilir; istenilen değerler ölçülür ve (x bar diye okunur) değerindeki örneklem ortalaması bulunur. Hipotez testi yönteminde araştırma hedefi bu örneklemin söz konusu anakütleden çekilmiş olup olamayacağını ya da kaynağı olan anakütleden çekilmiş olabilmesinin olasılığının ne olabileceğini ortaya koymaktır.

Örnek

Bir alçı dolum makinesi μo=20 kg ortalama ağırlıklı alçı dolumu yaparken arıza yapar. Tamirci getirip tamir ettirilir. Acaba yine μo=20kglık dolum yapabilecek midir?

Deneme yapıp görmek gerekir.

40 torba basit örneklem yöntemine göre seçilip bu 40 alçı torbası ağırlıkları şöyle ölçülmüştür:

= 19,8 kg, = 20,5 kg, = 21,2 kg, = 18,9 kg, ..., = 20,8 kg

Örneklem istatistikleri şöyle hesaplanmıştır:

n = 40 torba

Örneklem ortalaması: = 21,4 kg

Örneklem standart sapması: σ = 3,2 kg

=

-> 21,4±0,506 kg

Buradan sonra hipotez testleri sürecine geçilir.

Hipotezler

Ho: Elimizdeki örneklem anakütle ortalaması "Mo = 20kg" olan bir anakütleden çekilmiş bir rassal örneklem olup, örneklem ortalaması X- değeri anakütle ortalamasına eşit olarak kabul edilebilir. Aradaki 1,4 kg lık fark ise tesadüfe bağlanabilecek, önemli olmayan, anlam taşımayan çok küçük bir farktır. Dolayısıyla X- = Mo yazabiliriz. Yani elimizdeki örneklemin ait olduğu anakütle ortalamasını M ile gösteririz.

H1: Bu örneklem "Mo = 20kg" olan bir anakütleden çekilmiş bir rassal örneklem olamaz. Aradaki 1,4 kg lık fark tesadüfe bağlı değil, ayarlamanın yapılmamış olması nedeni ile gerçekleşmiştir. Bu kadarlık farkın tesadüfen ortaya çıkmış olması olasılığı çok küçüktür. Dolayısıyla dolum ayarı iyi olmadığı için istenenden daha hafif ya da daha ağır dolumlarla karşılaşmamız olasıdır. Bu örneklemin çekilmiş olduğu anakütle 20 kg olamaz. Örneklemimiz kendine ait başka bir anakütleden çekilmiş olmalıdır.

İstatistiksel anlamlılık düzeyinin belirlenmesi (Risk düzeyi, Yanılgı Payı, Hata payı)

α nın saptanması.

Hatasız bir test yapamayacağımız için her testte bir miktar yanılma riskimiz vardır. Bunu 0,05; 0,01; 0,005; 0,0001;... gibi bir düzey olarak benimseyebiliriz. Yanılma payımız küçüldükçe, teste olan güven düzeyimiz yükselir. O nedenle istatistikçiler olabildiğince az yanılma ile test yapmak isterler. Yine de α =0,05 ve α=0,01 düzeyleri en çok kullanılanlardır.

α=0,05 olsun. Testin güven düzeyi = 1 - α = 0,95 olur.

Örnekleme dağılımının belirlenmesi

Elimizdeki veriler tartma yoluyla elde edilmiş sürekli, nitelik, nicel bir değişkene aittir. Bu tip veriler genelde normal dağılım gösterirler. Yani örneklemimiz "normal dağılım" lı bir anakütleden çekilmiştir. Anakütle sonsuz büyüklüktedir. Seçim iadesiz seçimdir ve tamamen rassal bir süreçle yapılmıştır. Yani torbaların ağırlıkları birbirini etkilememiştir. n>30 olduğu için büyük bir örneklem ile çalışıyoruz. Aynı anakütleden n=40 birimli pek çok sayıda örneklem çekmiş olsak, bunların X- ortalama dağılımı bir normal dağılım olur. Bu ortalamaların ortalaması anakütle ortalamasını verir. "kg" biriminden kurtulmak için X- ortalama değerlerini standardize edersek, verilerimiz z değerlerine dönüşür ve dağılımımız bir standart normal dağılım olan z dağılımı na dönüşür.

Ret alanının belirlenmesi

Kritik değerin saptanması

Ret alanı demek; normal dağılım eğrisi altında seçtiğimiz güven alanı (Ho'ın kabul alanı) dışında kalan Ho'ın reddedilmesini sağlayan küçük alanlardır. Ret alanı çift yönlü olabilir. (eksi taraf, artı taraf) veya tek taraflı olabilir. (Yani ya sol tarafta ya da sağ tarafta) Bunun anlaşılması için H1 hipotezine bakarız.

Test istatistiği

Elimizdeki örnekleme ait zh değeri örneklemin bir istatistiğidir. Bu istatistik yardımıyla hipotez testini sonuçlandıracağız. O nedenle, zh değerine Test İstatistiği adını veriyoruz.

= (21,4-20)/0,51 = 2,74

Karşılaştırma, sonuç ve yorum

Bir hipotez testinde; zh < zα ise; Ho kabul edilir. Bu elimizdeki X-in, M ye yakın kabul edilebilecek bir konumda (Ho'ın kabul alanında) bulunduğunu gösterir.

Eğer zh > zα ise; Ho reddedilir. Elimizdeki örneklemin, Mo ortalamalı bir anakütleden çekilmiş rassal bir örneklem olmayacağı çünkü böyle bir şeyin gerçekleşmesi olasılığının çok küçük (p<0,05 veya p<0,01) olduğu sonucuna ulaşılır.

Sonuç

zh = 2,74 > z0,05 = 1,96 --> Ho RET

Bu duruma göre: elimizdeki örneklemin ortalaması, ilgilendiğim anakütlenin ortalamasından çok uzağa düşen bir büyüklüktedir. O nedenle iki ortalama arasındaki farkı z değerine dönüştürdüğümde, bulduğum zh = 2,74 değeri de z0,05 = 1,96 nın ötesine düşmüştür. Yani %5'lik ret alanına düşmüştür. Bu durumda X- = Mo biçiminde ifade ettiğim ve oradan M=Mo düzeyine yükselttiğim Ho hipotezini kabul edemem. Demek ki, bu makine hatalı dolum yapmakta, ortalaması 20 kg olan dolumlar gerçekleştirememektedir. Aynı deneyi n=40 olan 100 örneklem ile tekrarlarsam, bunun 95inde gene aynı sonuçla karşılaşmayı beklerim. Belki yalnızca 5inde makinenin ayarı iyiymiş gibi hatalı bir sonuca ulaşabilirim.

Dolayısıyla; verdiğim kararın doğru olması olasılığı %95 iken hatalı olması olasılığı en fazla %5 tir.

Test sonucundaki değerlendirmeler ve yorum

1) zh<zα olduğunda, Ho hipotezini kabul ediyoruz ve;

  • Bu iki örneklemin çekilmiş olduğu anakütle ortalamalarının birbirlerine eşit olduklarını,
  • Bu iki anakütlenin aynı anakütleden çekilmiş birer rassal örneklem olduğunu,
  • İki örneklem ortalaması arasında gözlediğimiz farkın bir olasılık eseri olarak ortaya çıkmış, istatistik bakımından anlamlı olmayan, önemli olmayan küçük bir fark olduğunu düşünürüz.

2) zh>zα olduğunda, Ho hipotezini reddediyoruz ve;

  • Ho hipotezine ait olan düşüncemizin tersini kabul ediyoruz, yani H1'i kabul ediyoruz.
  • Bu büyüklükteki zh değerinin olasılığa bağlı olarak ortaya çıkmış olması olasılığı (ihtimali) çok düşüktür. Bu olasılık (p değeri) seçtiğimiz α değerinden de küçüktür. Bu kadar küçük bir olasılıkla ortaya çıkan bu z değerini artık rastgeleliğe değil anakütlenin gerçekten farklı olmasına bağlarız.

Önemli parametrik hipotez sınamaları özeti

Tek örneklem ve tek anakütle parametresi için hipotez sınamaları

İsim Formül Varsayımlar
Tek-örneklem z-testi (Normal dağılım veya n > 30) ve bilinen σ değeri.

(z standard sapmalar sayı birimleri ile ölçülen ortalamaya uzaklıktır. n standard sapma aralığına düşen bir anakütlenin oranin en küçük değerini hesaplamak mümkündür; (bakin: Chebyshev'in eşitsizliği).

Tek-örneklem t-testi

(Normal anakütle veya n < 30) ve bilinmeyen σ değeri
Tek-oran için z-testi n .p > 10 ve n (1 − p) > 10

İki-örneklem ve iki anakütle parametresi farkı için hipotez sınamaları

İsim Formül Varsayımlar
İki-örneklem z-testi Normal dağılım ve bağımsız gözlemler ve (bilinen σ1 ve σ1 değerleri)
İki-örneklem pool edilmiş t-testi


(Normal anakütle veya n1+n2 > 40) ve bağımsız gözlemler ve σ1 = σ2 ve (bilinmeyen σ1 ve σ2 değerleri)
İki-örneklem pool edilmemiş t-testi



veya

(Normal anakütleler veya n1+n2 > 40) ve bağımsız gözlemler ve σ1 ≠ σ2 ve (bilinmeyen σ1 ve σ2 değerleri)
Çiftleştirilmiş t-testi

(Normal farklar anakütlesi veya n < 30) ve bilinmeyen σ değeri
İki-oran için z-testi, eşit varyanslar

n1.p1 >  5  ve n1(1 − p1) >  5  ve n2.p2 > 5  ve n2(1 − p2) >  5  ve bağımsız gözlemler
İki-oran için z-testi, eşit olmayan varyanslar n1.p1 >  5  ve n1(1 − p1) >  5  ve n2.p2 > 5  ve n2(1 − p2) >  5  ve bağımsız gözlemler

Sembollerin tanımlanması

  • = örneklem büyüklüğü
  • = örneklem ortalaması
  • = anakütle ortalaması
  • = anakütle standart sapması
  • = t istatistiği
  • = serbestlik derecesi
  • = örneklem 1 büyüklüğü
  • = örneklem 2 büyüklüğü
  • = örneklem 1 std. sapması
  • = örneklem 2 std. sapması
  • = oran 1
  • = oran 2
  • = anakütle 1 ortalaması
  • = anakütle 2 ortalaması
  • = n1 veya n2 için en küçük değer

Kaynakça

  1. ^ Işık, İ. (2014). Yokluk Hipotezi Anlamlılık Testi ve Etki Büyüklüğü Tartışmalarının Psikoloji Araştırmalarına Yansımaları. Eleştirel Psikoloji Bülteni, Nisan 2014, sayı: 5, sayfa:55-80. http://elestirelpsikoloji.org/wp-content/uploads/2014/11/55-80-Isik.pdf 8 Aralık 2015 tarihinde Wayback Machine sitesinde arşivlendi.

Dış bağlantılar


İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

Örnekleme istatistikte belirli bir yığından alınan kümeyi ifade eder. Örneğin; Türkiye'deki tüm üniversite sayıları bir yığın iken Ankara'daki üniversite sayısı bu yığından alınmış bir örnektir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Varyans Analizi istatistik bilim dalında, grup ortalamaları ve bunlara bağlı olan işlemleri analiz etmek için kullanılan bir istatistiksel modeller koleksiyonudur. Varyans Analizi kullanılmaktayken belirlenmiş bir değişkenin gözlemlenen varyansı farklı değişim kaynaklarına dayandırılabilen varyans bileşenine ayrılır. En basit şekliyle varyans analizi birkaç grubun ortalamalarının birbirine eşit mi eşit değil mi olduğunu sınamak için bir çıkarımsal istatistik sınaması olur ve bu sınama iki-grup için yapılan t-test sınamasını çoklu-gruplar için genelleştirir. Eğer, çoklu değişkenli analiz için birbiri arkasından çoklu iki-örneklemli-t-sınaması yapmak istenirse bunun I. tip hata yapma olasılığını artırma sonucu doğurduğu aşikardır. Bu nedenle, üç veya daha fazla sayıda ortalamaların ististiksel anlamlığının sınama ile karşılaştırılması için Varyans Analizleri daha faydalı olacağı gerçeği ortaya çıkmaktadır.

<span class="mw-page-title-main">Aritmetik ortalama</span>

Aritmetik ortalama, bir sayı dizisindeki elemanların toplamının eleman sayısına bölünmesi ile elde edilir. İstatistik bilim dalında hem betimsel istatistik alanında hem de çıkarımsal istatistik alanında en çok kullanan merkezi eğilim ölçüsü' dür.

Ortalama veya merkezsel konum ölçüleri, istatistik bilim dalında ve veri analizinde kullanılan bir veri dizisinin orta konumunu, tek bir sayı ile ifade eden betimsel istatistik ölçüsüdür. Günlük hayatta ortalama dendiğinde genellikle kast edilen aritmetik ortalama olmakla beraber bu ölçünün çok belirli bazı dezavantajları söz konusudur. Bu yüzden matematik ve istatistikte, bir anakütle veya örneklem veri dizisi değerlerini temsil eden tek bir orta değer veya beklenen değer, olarak medyan (ortanca), mod (tepedeğer), geometrik ortalama, harmonik ortalama vb adlari verilen birçok değişik merkezsel konum ölçüleri geliştirilmiş ve pratikte kullanılmaktadır.

<span class="mw-page-title-main">Standart sapma</span> İstatistikte bir varyasyon ölçüsü

Standart sapma, Olasılık kuramı ve istatistik bilim dallarında, bir anakütle, bir örneklem, bir olasılık dağılımı veya bir rassal değişken, veri değerlerinin yayılımının özetlenmesi için kullanılan bir ölçüdür. Matematik notasyonunda genel olarak, bir anakütle veya bir rassal değişken veya bir olasılık dağılımı için standart sapma σ ile ifade edilir; örneklem verileri için standart sapma için ise s veya s'

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

<span class="mw-page-title-main">Çarpıklık</span>

Çarpıklık olasılık kuramı ve istatistik bilim dallarında bir reel-değerli rassal değişkenin olasılık dağılımının simetrik olamayışının ölçülmesidir.

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.

F-testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan parameterik çıkarımsal sınama yöntemidir. F-testi sıfır hipotezine göre gerçekte bir F-dağılımı gösteren sınama istatistiği bulunduğu kabul edilen hallerde, herhangi bir istatistiksel sınama yapma şeklidir. Bu çeşit bir istatistiksel sınama önce Ronald Fisher tarafından 1920'li yıllarda tek yönlü varyans analizi için ortaya atılıp kullanılmış ve sonradan diğer şekillerde F-dağılım kullanan sınamalar da ortaya atılınca, bu çeşit sınamalara genel isim olarak F-testi adı verilmesi Ronald Fisher anısına George W. Snecedor tarafından teklif edilip, istatistikçiler tarafından F-testi bir genel isim olarak kabul edilmiştir.

Güven aralığı, istatistik biliminde bir anakütle parametresi için bir çeşit aralık kestirimi olup bir çıkarımsal istatistik çözüm aracıdır. Bir anakütle parametre değerinin tek bir sayı ile kestirimi yapılacağına, bu parametre değerini kapsayabilecek iki sayıdan oluşan bir aralık bulunur. Böylece güven aralıkları bir kestirimin ne kadar güvenilir olduğunu gösterir.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.

Student'ın t-testi istatistik bilimi içinde incelenen, eğer sıfır hipotez desteklenmekte ise test istatistiğinin bir Student's t-dağılımı gösterdiği hallerde uygulanan çıkartımsal istatistiksel hipotez sınamasıdır. Verilen iki değişik grup sayısal verinin birbirinden anlamlı olarak farklılık gösterip göstermemesini sınamak için kullanılabilir. En sıkça uygulanma örnekleri eğer test istatistiği içinde bulunan ölçek parametre faktörünün değerinin bir normal dağılım gösterdiği bilinmekte olduğu hallerde tatbik edilmektedir. Eğer test istatistiği içinde bulunan ölçek parametresi faktörünün değeri bilinmiyorsa ve bu faktör veriye dayayan bir kestirim ile ifade edilmekte ise test istatistiği bir Student'ın t-dağılımı gösterebilir.