İçeriğe atla

Hipokrat ayı

Hipokrat ayı, sol üstteki gölgeli alandır ve sağ alttaki gölgeli üçgenle aynı alana sahiptir.

Geometride adını Sakız Adalı Hipokrat'tan sonra alan Hipokrat ayı, iki çemberden oluşan yaylarla sınırlanmış bir aydır, daha küçük olanın çapı, daha büyük çember üzerinde dik bir açıyı kapsayan bir kirişe sahiptir.[1]

Tarihçe

Hipokrat, klasik çemberin kareleştirilmesi problemini, yani belirli cetvel ve pergel vasıtasıyla bir daire ile aynı alana sahip olan bir kare çizme problemini çözmek istedi.[2][3] Hipokrat'ın bu sonucun ortaya çıktığı geometri üzerine kitabı olan Elemanlar adlı eseri kayboldu, ancak Öklid'in Elemanlar adlı eseri için bu eser bir model oluşturmuş olabilir.[3]

Hipokrat'ın kanıtı, Rodoslu Eudemus tarafından derlenen, ancak günümüze ulaşmayan Geometri Tarihi (History of Geometry) adlı eserin, Kilikyalı Simplicius tarafından Aristotle'nin Fizik adlı eseri hakkındaki yorumundaki alıntılar aracılığıyla korunmuştur.[2][4]

1882'ye kadar, Ferdinand von Lindemann'ın π'nin aşkınlığının kanıtıyla, Daireyi kareleştirme probleminin çözümünün imkansız olduğu bilinmiyordu.[5]

Hipokrat ayı, eğri çizgilerle sınırlanmış bir alanın kesin ölçümü ile ilgili ilk örnektir.[6]

İspat

Hipokrat'ın sonucu şu şekilde ispatlanabilir: yayının bulunduğu dairenin merkezi, ikizkenar dik üçgeninin hipotenüsünün orta noktası olan noktasıdır. Bu nedenle, daha büyük dairesinin çapı, yayının üzerinde bulunduğu daha küçük dairenin çapının 2 katıdır. Sonuç olarak, daha küçük daire, büyük dairenin yarı alanına sahiptir ve bu nedenle, çeyrek daire , yarım daire 'ya eşittir. Hilal şeklindeki alanını çeyrek daireden çıkarmak, üçgenini verir ve aynı hilali yarım daireden çıkarmak Hipokrat ayının alanını verir. Üçgen ve Hipokrat ayı, eşit alandan eşit alanlar çıkarılarak oluşturulduğundan, alan olarak da eşittir.[2][7]

Hipokrat ayının çizilmesi

Adım adım Hipokrat ayının çizilmesi.
  1. Bir ikizkenar dik üçgeni çizin.
  2. Merkez olmak üzere ve noktaları arasına bir yay çizin.
  3. üçgeninin hipotenüsünün orta noktası olan noktası merkez olacak şekilde, ve noktaları arasına başka bir yay çizin.

Dışarıda kalan yeşil şekil, Hipokrat ayıdır.

Ayın alanı = Yarım dairenin alanı - Dairesel dilimin alanı
Ayın alanı = Yarım dairenin alanı - (sektörün alanı - üçgenin alanı)
Ayın alanı = πr2/2 - πr2180°/360° + üçgenin alanı
Ayın alanı = Üçgenin alanı

Genelleştirme

İbn-i Heysem (Alhazen) ayları. İki mavi ay birlikte yeşil dik üçgenle aynı alana sahiptir.

Yukarıdakine benzer bir kanıtı kullanarak, Arap matematikçi Hasan İbn-i Heysem (Avrupa'da Alhazen olarak bilinir, yaklaşık 965 - 1040), dış sınırları bir dik üçgenin iki kenarındaki yarım daire olan ve iç sınırları üçgenin çevresi tarafından oluşturulan, bu iki ayın birbirine eklenen alanları üçgenin alanına eşit olan iki ay olduğunu gösterdi. Dik üçgenden bu şekilde oluşan aylar, İbn-i Heysem (Alhazen) ayları olarak bilinir.[8][9] Hipokrat ayının tümlevi, ikizkenar dik üçgen için bu sonucun özel halidir.[10]

20. yüzyılın ortalarında, iki Rus matematikçi, Nikolai Chebotaryov ve öğrencisi Anatoly Dorodnov, pergel ve cetvel ile çizilebilen ve belirli bir kareye eşit alana sahip olan ayları tamamen sınıflandırdılar. Tüm bu tür aylar, kendi daireleri üzerindeki iç ve dış yayların oluşturduğu iki açı ile belirlenebilir. Bu gösterimde, örneğin, Hipokrat'ın ayı, (90°, 180°) iç ve dış açılara sahip olacaktır. Hipokrat, yaklaşık olarak (107.2°, 160.9°) ve (68.5°, 205.6°) açıları olan iki tane daha kare şeklinde içbükey ay buldu. Yaklaşık (46.9°, 234.4°) ve (100.8°, 168.0°) açıları olan iki kare daha içbükey ay, 1766'da Martin Johan Wallenius [ru] ve yine 1840'da Thomas Clausen tarafından bulundu. Chebotaryov ve Dorodnov'un gösterdiği gibi, bu beş çift açı, tek çizilebilir kare şeklinde ayları verir; özellikle çizilebilir kare biçimli dışbükey ay yoktur.[1][9]

Kaynakça

  1. ^ a b Postnikov, M. M. (2000), "The problem of squarable lunes", American Mathematical Monthly, 107 (7), ss. 645-651, doi:10.2307/2589121, JSTOR 2589121 . Translated from Postnikov's 1963 Russian book on Galois theory.
  2. ^ a b c Heath, Thomas L. (2003), A Manual of Greek Mathematics, Courier Dover Publications, ss. 121-132, ISBN 0-486-43231-9, 30 Ağustos 2020 tarihinde kaynağından arşivlendi, erişim tarihi: 18 Eylül 2020 .
  3. ^ a b "Hippocrates of Chios", Encyclopædia Britannica, 2012, erişim tarihi: 12 Ocak 2012 .
  4. ^ O'Connor, John J.; Robertson, Edmund F., "Hippocrates of Chios", MacTutor Matematik Tarihi arşivi 
  5. ^ Jacobs, Konrad (1992), "2.1 Squaring the Circle", Invitation to Mathematics, Princeton University Press, ss. 11-13, ISBN 978-0-691-02528-5 .
  6. ^ "Lune of Hippocrates". 20 Nisan 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Eylül 2020. 
  7. ^ Bunt, Lucas Nicolaas Hendrik; Jones, Phillip S.; Bedient, Jack D. (1988), "4-2 Hippocrates of Chios and the quadrature of lunes", The Historical Roots of Elementary Mathematics, Courier Dover Publications, ss. 90-91, ISBN 0-486-25563-8, 6 Eylül 2020 tarihinde kaynağından arşivlendi, erişim tarihi: 18 Eylül 2020 .
  8. ^ "Hippocrates' Squaring of the Lune". Cut-the-Knot. 20 Şubat 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Ocak 2012. 
  9. ^ a b Alsina, Claudi; Nelsen, Roger B. (2010), "9.1 Squarable lunes", Charming Proofs: A Journey into Elegant Mathematics, Dolciani mathematical expositions, 42, Mathematical Association of America, ss. 137-144, ISBN 978-0-88385-348-1, 23 Eylül 2020 tarihinde kaynağından arşivlendi, erişim tarihi: 18 Eylül 2020 .
  10. ^ Anglin, W. S. (1994), "Hippocrates and the Lunes", Mathematics, a Concise History and Philosophy, Springer, ss. 51-53, ISBN 0-387-94280-7, 26 Haziran 2020 tarihinde kaynağından arşivlendi, erişim tarihi: 18 Eylül 2020 .

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Dik üçgen</span>

Dik üçgen, iç açılarından biri 90° olan üçgendir. Çemberde çapı gören çevre açı 90°'dir.

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

<span class="mw-page-title-main">Sinüs teoremi</span> Öklid geometrisinde üçgenlerle ilgili bir teorem

Sinüs teoremi, bir çembersel üçgende bir kenar ve bu kenar karşısındaki açının sinüsleri oranı sabittir. Sinüs, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün birbirine oranıdır.

<span class="mw-page-title-main">Trigonometri tarihi</span>

Üçgenlerle ilgili erken çalışmalar, Mısır matematiği ve Babil matematiğinde MÖ 2. binyıla kadar izlenebilir. Trigonometri, Kushite matematiğinde de yaygındı. Trigonometrik fonksiyonların sistematik çalışması Helenistik matematikte başladı ve Helenistik astronominin bir parçası olarak Hindistan'a ulaştı. Hint astronomisinde trigonometrik fonksiyonların incelenmesi, özellikle sinüs fonksiyonunu keşfeden Aryabhata nedeniyle Gupta döneminde gelişti. Orta Çağ boyunca, trigonometri çalışmaları İslam matematiğinde El-Hârizmî ve Ebu'l-Vefâ el-Bûzcânî gibi matematikçiler tarafından sürdürüldü. Altı trigonometrik fonksiyonun da bilindiği İslam dünyasında trigonometri bağımsız bir disiplin haline geldi. Arapça ve Yunanca metinlerin tercümeleri trigonometrinin Latin Batı'da Regiomontanus ile birlikte Rönesans'tan itibaren bir konu olarak benimsenmesine yol açtı. Modern trigonometrinin gelişimi, 17. yüzyıl matematiği ile başlayan ve Leonhard Euler (1748) ile modern biçimine ulaşan Batı Aydınlanma Çağı boyunca değişti.

<span class="mw-page-title-main">İkizkenar üçgen</span>

İki kenarı birbirine eşit olan çokgenlerdir. İç açıları toplamı 180°'dir.

<span class="mw-page-title-main">Brocard noktaları</span>

Brocard noktaları, geometride bir üçgen içinde yer alan özel noktalardır. Fransız matematikçi Henri Brocard'ın çalışmalarından dolayı bu adı almıştır.

<span class="mw-page-title-main">Kepler üçgeni</span>

Kepler üçgeni, kenarları geometrik dizi oluşturan bir dik üçgen. Kepler üçgeninin kenarları altın oranla

<span class="mw-page-title-main">Thales teoremi (çember)</span>

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Sakız Adalı Oenopides, MÖ 450 civarında yaşamış eski bir Yunan geometrici ve astronom.

<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

<span class="mw-page-title-main">Pappus'un alan teoremi</span> rastgele bir üçgenin üç kenarına iliştirilmiş üç paralelkenarın alanları arasındaki ilişkiyi verir

Pappus'un alan teoremi, verilen herhangi bir üçgenin üç kenarına yaslanmış üç paralelkenarın alanları arasındaki ilişkiyi tanımlar. Pisagor teoreminin bir genellemesi olarak da düşünülebilecek teorem, adını onu keşfeden Yunan matematikçi İskenderiyeli Pappus'tan almıştır.

<span class="mw-page-title-main">Brahmagupta teoremi</span>

Geometride, Brahmagupta teoremi, eğer bir kirişler dörtgeni ortodiyagonal ise, o zaman köşegenlerin kesişme noktasından bir kenara çizilen dikmenin karşı kenarı daima ikiye böldüğünü belirtir. Adını Hint matematikçi Brahmagupta'dan (598-668) almıştır.

Carnot teoremi, bir üçgenin iç teğet çemberi ve çevrel çemberinin yarıçaplarının uzunlukları ile çevrel çemberin merkezinden üçgenin üç kenarına olan mesafelerin toplamı arasındaki ilişkiyi göstermektedir. Fransız matematikçi Lazare Nicolas Marguerite Carnot tarafından bulunmuştur.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Sakız Adalı Hipokrat</span> MÖ 5. yüzyılda yaşamış Yunan matematikçi ve astronom

Sakız Adalı Hipokrat eski bir Yunan matematikçi, geometrici ve astronom.

<span class="mw-page-title-main">Jacobi teoremi (geometri)</span>

Düzlem geometride, bir Jacobi noktası, bir üçgeni ve , ve açılarından oluşan üçlü tarafından belirlenen Öklid düzleminde bir noktadır. Bu bilgi, , ve olmak üzere , ve şeklinde üç noktayı belirlemek için yeterlidir. Ardından, Alman matematikçi Karl Friedrich Andreas Jacobi (1795-1855) teoremine göre, , ve doğruları, Jacobi noktası denilen bir noktasında kesişir.

<span class="mw-page-title-main">Reuleaux üçgeni</span>

Bir Reuleaux üçgeni, merkezi diğer ikisinin sınırında bulunan üç çembersel diskin kesişmesinden oluşan bir şekildir. Sınırı, dairenin kendisinden başka en basit ve en iyi bilinen bu eğri, bir sabit genişlikli eğridir. Sabit genişlik, her iki paralel destek doğrusunun aralığının yönlerinden bağımsız olarak aynı olduğu anlamına gelir. Tüm çapları aynı olduğu için Reuleaux üçgeni, "Daire dışında, delikten düşmemesi için bir rögar kapağı hangi şekillerde yapılabilir?" sorusunun cevabıdır.