İçeriğe atla

Hiperişlem

Hiperişlem, matematik'te aritmetik işlemlerin sonsuz dizisidir. Ardılın birli işlemi, ardından toplama, çarpma ve üs almanın iki işlemiyle devam eden ve ardından ikili işlemlerin ötesine geçerek serilerle ilerleyen bir işlemdir. Üstelden sonraki işlemler için bu dizinin n. elemanı Reuben Goodstein tarafından adlandırıldı. n Yunan önekinden sonra -syon son eki kullanılarak (tetrasyon, pentasyon gibi) elde edilir ve Knuth yukarı ok gösterimindeki n-2 okları kullanılarak yazılabilir. Her hiperişlem, önceki terimlerin yinelemesi olarak tanımlanır. Ackermann işlevi, Knuth yukarı ok gösterimini kullanarak şöyle yinelenebilir:

Bu yinelemeli kural, hiperişlemde yaygın olarak kullanılır (aşağıya bakınız).

Tanım

Hiperişlem dizisi, olmak üzere ikili işlemlerinin dizisidir ve yinelemesi şöyle tanımlanır:

(n = 0 için, ikili işlemin ilk argümanı göz ardı edilerek birli işlem elde edilir.)

n = 0, 1, 2, 3 için bu tanım, ardıl (birli işlem), toplama, çarpma ve üs almanın temel artimetik işlemlerini sırasıyla şu şekilde yeniden üretir;

ve n ≥ 4 için, bu temel işlemleri, üs almanın da ötesine götürerek Knuth yukarı ok gösterimiyle şöyle yazabiliriz;

...
...

Knuth gösterimi ≥ -2 negatif altgöstergelerinde (indislerinde), tüm hiperişlem dizisi için geçerli olduğunu kabul ederek, genişletilebilir, Sadece aşağıdaki altgösterge aralığı hariç:

"Sonraki dizi nedir?" sorusunun cevabını hiperişlem şunlarla gösterebilir: Ardıl, toplama, çarpma, üs alma ve böylece devam eder.

Temel aritmetik işlemler arasındaki ilişki, yukarıda da gösterildiği gibi, daha yüksek işlem tanımlanarak gösterilir. Hiperişlem hiyerarşisinin parametreleri, bazen kendi örnek hiperişlem terimi;[1] tarafından ifade edilir. Böylece a taban, b üs (veya hiperüs) ve n de derece (veya kademe)dir.

Genellikle hiperişlemler, önceki hiperişlem tekrarının yükseliş tabanında, artan birleşim sayılarının yolları olarak bilinir. Ardıl, toplama, çarpma ve üs alma kavramlarının hepsi hiperişlemdir. Ardıl işlemi (x den x+1 üretme) en ilkelidir. 1'lerin sayısını belirten toplama işareti, son değeri üretene kadar kendine eklenir. Çarpma, kendisiyle kaç kez tekrarlandığını ifade eder. Üs alma, kendisiyle kaç kez çarpıldığının sayısını ifade eder.

Örnekler

Aşağıda, ilk yedi hiperişlemin listesi görülüyor.

nİşlem Tanım Adlar Bölge
0 hiper0, artış, ardıl, zerasyon b rastgele
1 hiper1, toplamarastgele
2 hiper2, çarpmarastgele
3 hiper3, üstel a > 0, b reel veya a sıfır olmayan, b tam sayı
4 hiper4, tetrasyona > 0, b (tam sayı) ≥ −1
5 veya hiper5, pentasyon a ve b tam sayı, a > 0, b ≥ 0
6 hyper6, hekzasyon a ve b tam sayı, a > 0, b ≥ 0

Knuth gösterimindeki değerlerin tablolarına bakınız.

Tarihçe

Hiperişlemlerle ilgili ilk tartışma 1914'te Albert Bennett'in, değişmeli hiperişlemleri geliştirdiğinde başladı. Yaklaşık 12 yıl sonra Wilhelm Ackermann hiperişlem dizisine benzeyen fonksiyonunu tanımladı.

1947'de R. L. Goodstein, hiperişlem olarak adlandırılan özel işlemler dizisini geliştirdi ve genişleyen üslü işlemleri ifade edebilmek için Yunanca adlar olan tetrasyon, pentasyon, hekzasyon, vb. önerdi. Örn gibi üç argümanlı (değişkenli) fonksiyonun hiperişlem dizisi, özgün Ackermann işlevinin bir çeşididir.

Gösterimler

Aşağıdaki, hiperişlemlerde kullanılan gösterimlerin bir listesidir.

Ad Gösterimin deki eşdeğeri Açıklama
Knuth yukarı ok gösterimi(n ≥ 2 için) Knuth tarafından kullanıldı ve birkaç referans kitap bulundu.
Goodstein gösterimi Reuben Goodstein tarafından kullanıldı.
Özgün Ackermann işleviWilhelm Ackermann tarafından kullanıldı.
Ackermann–Péter fonksiyonuBu gösterim, hiperişlemlerdeki 2'ye karşılır gelir.
Nambiar gösterimi Nambiar tarafından kullanıldı.
Kutu gösterimiRomerio tarafından kullanıldı
Üstgösterge yazımı Robert Munafo tarafından kullanıldı
Altgösterge yazımı Düşük hiperişlemleri ifade etmesi için Robert Munafo tarafından kullanıldı
Köşeli parantez gösterimi Birçok online forumda kullanıldı. ASCII için uygundur.

Genelleştirme

Farklı başlangıç şartları veya farklı özyineleme kuralları için birçok işlem ortaya çıktı. Bazı matematikçiler tümünü, hiperişlemlerin örnekleri olarak kabul ediyor.

Genel duyarlılık, bir hiperişlem hiyerarşisi, ikili işlemin 'deki ailesi 'dir ve şartını sağlayan tarafından dizinlenir. Burada

  • (toplama),
  • (çarpma) ve
  • (üs almadır).

Hiperişlemde çözüm aranılan açık bir problem, hiperişlem hiyerarşisi 'nin, 'yi genelleştirebileceğimi yoksa 'nin sözdegrup gibi davranacağı (kısıtlı tricted domains).

'dan başlamanın farkı

1928'de Wilhelm Ackermann, 3 argümanlı fonksiyonunu tanımladı. Bu 2 argümanlı olan ve Ackermann işlevi olarak bilinen fonksiyonun azar azar geliştirilmiş şeklidir. Özgün Ackermann işlevi olan , modern hiperişlemlere birazcık benziyordu. Çünkü onun başlangıç şartları, tüm için dan başlar. Ayrıca eklemeyi 'a, çarpmayı 'e ve üs almayı 'a atadı. Böylece başlangıç şartları, tetrasyon ve ilerisi için çok farklı işlemler üretti.

nİşlem Açıklama
0
1
2
3 Tetrasyonun bir formu. Bu işlemin tekrarı, tetrasyonun tekrarından çok farklıdır.
4 Pentasyonla karıştırmayın.

Kullanılan diğer başlangıç şartı, (buradaki taban sabit olan 'dir).

0'dan başlamanın farkı

1984'te, C. W. Clenshaw ve F. W. J. Olver, bilgisayardaki kayan noktaların akışını engellemek için hiperişlemlerin kullanımıyla ilgili tartışma başlattı

nİşlem Açıklama
1
2
3
4 Tetrasyonun bir formu. Bu işlemin tekrarı tetrasyonun tekrarından çok farklıdır.
5 Pentasyonla karıştırmayın.

Değişimli hiperişlemler

Değişimli hiperişlemler 1914 başlarında Albert Bennett tarafından dikkate alındı. Değişimli hiperişlemler özyineleme kuralı tarafından tanımlanır

bu, a ve b de simetriktir ve tüm hiperişlemlerin değişimli olduğu anlamına gelir. Bu dizi üstelleri içermez ve bu yüzden hiperişlem hiyerarşisi formu değildir.

nİşlem Açıklama
0
1
2 Logaritmanın özelliklerinden dolayı.
3 Üstelin birleşme formu.
4 Tetrasyonla karıştırmayın.

Dengeli hiperişlemler

Dengeli hiperişlemler, ilk önce Clément Frappier tarafından 1991'de ortaya atıldı. fonksiyon tekrarının temelini oluşturur ve bu yüzden Steinhaus-Moser gösterimi ile ilişkilidir. Dengeli hiperişlemlerde kullanılan özyineleme kuralı şudur:

Bu, süreklilik iterasyonunu, hatta b tam sayıları için bile gereklidir.

nİşlem Açıklama
0 0. derece yoktur.[nb 1]
1
2
3 Bu üstür.
4 Tetrasyonla karıştırmayın.

Düşük hiperişlemler

Bu hiperişlemlere bir alternatif, soldan sağa doğru işlem yaparak şöyle elde edilir.

bu (° veya altgösterge ile) tanımlanır ile , ve için 'dir

Fakat bu, geleneksel "üslü kule" formundaki kusurdan dolayı biraz düştü, Fakat şu hiper4 hariç:

n>3 için nasıl 'den çok farklı olabilir ki? Bu, simetriden dolayı, + ve × içinde tanımlanan birleşme olarak adlandırılır (cisime bakınız) fakat ^ eksik.

nİşlem Açıklama
0 artış, ardıl, zarasyon
1
2
3 Bu üstür.
4 Tetrasyonla karıştırmayın.
5 Pentasyonla karıştırmayın.

Ayrıca bakınız

Notlar

  1. ^ Eğer 0.derece dengeli hiperişlem olsaydı ardından toplama olurdu. Bu eşitlikte koyarak elde edilir ki, bu da çelişkidir .

Alıntı

  1. ^ G. F. Romerio (21 Ocak 2008). "Hyperoperations Terminology (Hiperişlemler Terimbilimi)". Tetrasyon Forumu. 2 Ekim 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Nisan 2009.  |yayımcı= dış bağlantı (yardım)

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Vektör hesaplamada, divergence bir vektör alanının kaynak ya da batma noktasından uzaktaki bir noktada genliğini ölçen işleçtir; yani bir vektör alanının uzaksaması işaretli bir sayıdır. Örneğin ısındıkça genişleyen havanın hızını gösteren bir vektör alanının uzaksaması pozitif olacaktır, çünkü hava genişlemektedir. Eğer hava soğuyup daralıyorsa uzaksama negatif olacaktır. Bu özel örnekte uzaksama yoğunluğun değişiminin ölçüsü olarak düşünülebilir.

2 (iki) bir sayı, rakam ve gliftir. 1'den sonraki ve 3'ten önceki doğal sayıdır. En küçük ve hatta yegâne çift asal sayıdır. Bir dualitenin temelini oluşturduğundan, birçok kültürde dini ve manevi öneme sahiptir.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Halka</span>

Halka, matematikte cebirin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalar diğer bir temel yapı olan grupların üzerine inşa edilir. Her halka, aynı zamanda değişmeli bir gruptur, ama bir halkadan daha fazla özelliği sağlaması istenir. Örneğin halkada grup işlemine ek olarak ikinci bir işlem daha vardır. Halkalara örnek olarak tam sayılar, modülo n sayılar, polinomlar ya da karmaşık sayılar verilebilir.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

Grup, soyut cebirin en temel matematiksel yapısıdır. Grup, ayrıca bir ikili işlemin tanımlı olduğu bir kümedir. Bir grubun grup olabilmesi için aynı zamanda bu işlemin birleşmeli, birim elemanlı ve ters elemanlı olması gerekir. Soyut cebirin halka, cisim, modül gibi diğer yapılarının temelini oluşturur.

Cisim, halka ve grup gibi soyut bir cebirsel yapıdır. Kabaca, elemanları arasında toplama, çıkarma, çarpma ve bölme yapılabilen ve bu işlemlerde sayılardan alışık olduğumuz temel aritmetik kurallarının geçerli olduğu bir küme olarak tanımlanabilir.

Faz kelimesinin sözlük anlamı evredir.

Fazör, sinüzoidal bir ifadenin genlik ve faz açısı bileşenleri kullanılarak oluşturulmuş formülasyonudur.

Elektriksel gücün tanımı aşağıdaki gibidir.

Büyük sayılar, gündelik yaşamda normalde kullanılmayan büyük sayıları ifade eder. Terim genellikle büyük pozitif tam sayıları veya daha genel anlamda büyük pozitif reel sayıları belirtir. Fakat, diğer anlamlar için de kullanılabilir.

Knuth yukarı ok gösterimi, matematikte, çok büyük tam sayıların gösterim yöntemidir. 1976'da Donald Knuth tarafından geliştirildi. Ackermann işlevi ve özel hiperişlem serisi ile oldukça bağlantılıdır. Çarpmanın, tekrarlı hiperişlem olarak tekrarlı toplama ve üs alma gibi görülebilmesi fikrine dayanır. Bu durumu devam ettirme tekrarlı üssü (tetrasyonu) ve çoğunlukla Knuth ok gösterimi kullanılarak ifade edilen aşırı seri üretiminin geri kalanını meydana getirir.

Conway dizisi ok gösterimi, çok büyük sayıları ifade etmek için matematikçi John Horton Conway tarafından oluşturuldu. Pozitif tam sayılar serisini basitçe sağa doğru oklarla ayırarak gösterir. Örneğin, 2→3→4→5→6.

Graham sayısı, adını Ronald Graham'dan alan, Ramsey teorisindeki problemlerin çözümü için üst sınır getiren büyük bir sayıdır.

<span class="mw-page-title-main">Tetrasyon</span>

Matematikte, tetrasyon, üslü sayıdan sonra gelen ilk aşırı işlecin tekrarlı üssüdür. Tetrasyonun İngilizce karşılığı olan tetration kelimesi ilk kez matematikçi Reuben Louis Goodstein tarafından, tetra- (dört) ve iteration (tekrar)dan türetilerek kullanılmaya başlandı. Tetrasyon çok büyük sayıların gösterimi için kullanıldı. Fakat birkaç pratik uygulaması vardır. Bu yüzden sadece saf matematik incelenir. Burada aşırı işlecin ilk dört örneğin gösteriliyor. Tekrasyon dördüncüsüdür:

  1. toplama
    Normal bilinen toplama işlemi.
  2. çarpma
    genellikle temel işlemlerden birini ifade eder. Fakat doğal sayılar gibi özel durumlar için kendine n kere eklenen a olabilir.
  3. üs alma
    a nın kendisi ile n kere çarpılması.
  4. tetrasyon
    a 'nın kendisiyle n kere üssünün alınması.

Paillier şifrelemesi , 1999’da Pascal Paillier tarafından geliştirilen olasılıksal açık anahtarlı şifreleme yöntemidir. n’inci kök sınıflarını hesaplamanın zorluğunu kullanan Paillier şifreleme sistemi, kararsal bileşik kök sınıfı varsayımı üzerine kurulmuştur. Sistem, toplama işlemine göre homomorfik özellik gösterir; yani sadece açık anahtarı, ve ’nin şifrelemesini kullanarak ’nin şifrelenmiş hâli hesaplanabilir.

<span class="mw-page-title-main">Birleşme özelliği (ikili işlemler)</span>

Matematikte birleşmeli özellik, bir küme üzerine tanımlanmış ikili işlemlerin ayırt edici özelliklerinden biridir. Bu özelliği sağlayan ikili işlemlere birleşmeli işlem denir. Açık olarak bu özellik, (xy)z = x(yz) demektedir, yani üç elemanı "çarparken" işlem sırasının önemli olmadığını söylemektedir, bir başka deyişle birleşmeli özellikte işlem yaparken paranteze gerek olmadığını söylemektedir. Örneğin tam sayılar kümesi Z üzerine tanımlanmış olan toplama işlemi birleşmeli bir işlemdir ancak çıkarma işlemi birleşmeli değildir, çünkü eşitliği her için sağlanmasına karşın, eşitliği için sağlanmaz.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.

Süperfaktöriyel, sembolü ‼ olan özel tanımlı bir matematiksel fonksiyondur. Matematikte, süperfaktöriyelin birden fazla tanımı vardır.