İçeriğe atla

Higgs bozonu

Higgs bozonuna ait bir işaret olduğu tahmin edilen ve proton-proton çarpışması sonucu ortaya çıkan verilerle hazırlanan temsili bir grafik. Bozon anında bozunuyor ve ortaya 2 elektron ile 2 hadron jeti (şekilde çizgiler halinde gösterilmiştir) çıkıyor.

Higgs bozonu; Peter Higgs, Gerald Guralnik, Richard Hagen, Tom Kibble,[1] François Englert ve Robert Brout tarafından Standart Model'deki fermiyonlara kütle kazandırmak için varlığı öne sürülmüş, spini 0 (sıfır) olan parçacık. H veya h olarak kısaltılır. Aralık 2011'de o zamanlar iki ana deneyin (ATLAS ve CMS) sözcüleri birbirlerinden bağımsız sonuçlara dayanarak Higgs parçacığının 125 GeV/c2 (133 proton kütlesi, 10−25 kg) değerinde bir kütleye sahip olabileceğini belirtti. Ayrıca yaptıkları açıklamada 115–130 GeV/c2 arası hariç Higgs'in bulunmayacağı diğer kütle aralıklarının önemli ölçüde elendiğini belirttiler.[2] BHÇ'nin kesin bir sonuç için gerekli cevabı 2012'nin sonunda vereceği söylendi.[3][4][5][6] 22 Haziran 2012'de CERN, yapılan deneylerin son durumu hakkında bir seminer verileceğini duyurdu.[7][8] 28 Haziran 2012 civarlarında parçacığın bulunduğu yönünde açıklamaların geleceği medyada yayılmaya başladı fakat bunun "sadece güçlü bir sinyal" mi yoksa resmi bir keşif mi olacağı belirsizdi.[9]

4 Temmuz 2012'de CERN, "Higgs bozonu ile tutarlı" bir parçacığın resmi keşfini açıklamaya yeterli olan "5 sigma" seviyesindeki sinyali doğruladı. Gerçekten de Higgs bozonunun teorik olarak tüm öngörülen özellikleri taşıyıp taşımadığını ve eğer taşıyorsa Standart Model'in hangi versiyonunu daha çok desteklediği ise ileride yapılacak olan araştırmaların göstereceği belirtildi.[10][11][12][13][14] Ayrıca bu Higgs bozonu ile tutarlı olarak bulunan parçacığa şimdilik "higgson" ismi verilmiştir.[15]

14 Mart 2013'te bilim insanları Higgs Bozonu'nun varlığından emin olduklarını açıkladı. 8 Ekim 2013 tarihinde Alfred Nobel adına verilen Nobel Fizik Ödülünü, Peter Higgs ve François Englert'in kazandığı açıklandı.[16]

1993'te yayımlanan Tanrı Parçacığı adlı kitaba ithafen Higgs bozonu ana akım medyada zaman zaman "Tanrı parçacığı" adıyla anılmasına rağmen Higgs'in kendisi de dahil olmak üzere pek çok fizikçi bu yakıştırmayı doğru bulmaz.[17]

Kuramsal ayrıntılar

Standart Model içindeki kuvvet taşıyıcı ayar bozonları kısa erimli doğaları sebebi ile kütleli olmak zorundadırlar. Higgs spin'i 0 (sıfır) olan kompleks bir alandır. Bu iki yüksüz, iki de yüklü parçacığa karşılık gelir. Higgs potansiyeli Kendiliğinden Simetri Kırılması dolayısıyla bir vakum beklenen değerine VBD sahip olur. Aynı zamanda sözü geçen 4 parçacıktan sadece bir tanesi kalır. VBD, SU(2)_L ayar alanın 3 tane ayar parçacığına kütle verir. Bu 3 ayar parçacığı $W^{\pm}$ ve Z^0 bozonlarıdır.

Deneysel ayrıntılar

2008 yılının sonlarında çalışması planlanan CERN'deki LHC hızlandırıcısında yapılacak CMS deneyi, ATLAS, LHCb deneyi ve ALICE deneylerinde Higgs parçacığı yanı sıra Standart Model ötesinde nasıl bir fizik olduğu araştırılmaya devam etmektedir. CERN deneyinde bulunduğu sanılmaktadır.

13 Aralık 2011'de, ATLAS Deneyi ile 2011 yılı içerisinde elde edilen bulgular açıklandı. Bu bulgulara göre Higgs bozonunun kütlesi 131-453 GeV aralığında %95 ihtimalle bulunmamakla birlikte olası kütlesinin 126 GeV civarında olduğu tahmin ediliyor.[18] CMS deneyi ekibi ise 124 GeV civarında olduğu yönünde tahmin ettiklerini belirttiler.

Kaynakça

  1. ^ "Global Conservation Laws and Massless Particles". 27 Mayıs 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Haziran 2008. 
  2. ^ As of 13 December 2011 ATLAS excludes at the 95% confidence level energies outside 116–130 GeV/c2 and CMS excludes at the 95% confidence level energies outside 115–GeV/c2.
  3. ^ "ATLAS experiment presents latest Higgs search status". CERN. 13 Aralık 2011. 6 Ocak 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Aralık 2011. 
  4. ^ "Detectors home in on Higgs boson". Nature News. 13 Aralık 2011. 3 Temmuz 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Temmuz 2012. 
  5. ^ "CMS search for the Standard Model Higgs Boson in LHC data from 2010 and 2011". CERN. 13 Aralık 2011. 7 Ocak 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Aralık 2011. 
  6. ^ "ATLAS and CMS experiments present Higgs search status". CERN. 13 Aralık 2011. 14 Aralık 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Aralık 2011. 
  7. ^ "Press Conference: Update on the search for the Higgs boson at CERN on 4 July 2012". 21 Temmuz 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Temmuz 2012. 
  8. ^ "CERN to give update on Higgs search". CERN. 22 Haziran 2012. 24 Haziran 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 2 Temmuz 2011. 
  9. ^ "Arşivlenmiş kopya". 4 Temmuz 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Temmuz 2012. 
  10. ^ "CERN experiments observe particle consistent with long-sought Higgs boson". CERN. 4 Temmuz 2012. 5 Temmuz 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Temmuz 2012. 
  11. ^ "Observation of a New Particle with a Mass of 125 GeV". 5 Temmuz 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Temmuz 2012. 
  12. ^ "Latest Results from ATLAS Higgs Search". 7 Temmuz 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Temmuz 2012. 
  13. ^ Video (04:38) 4 Temmuz 2012 tarihinde Wayback Machine sitesinde arşivlendi. - CERN Announcement (4 July 2012) Of Higgs Boson Discovery.
  14. ^ Overbye, Dennis (4 Temmuz 2012). "A New Particle Could Be Physics' Holy Grail". New York Times. 4 Temmuz 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Temmuz 2012. 
  15. ^ "Higgs Bozonu Bulundu Mu? - KBT Bilim, 04 Temmuz 2012". 7 Temmuz 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Temmuz 2012. 
  16. ^ "'Tanrı parçacığı'na Nobel!". sabah. 8 Ekim 2013. 12 Haziran 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Ekim 2013. 
  17. ^ "Anything but the God particle". 25 Temmuz 2018 tarihinde kaynağından arşivlendi. 
  18. ^ "Higgs Parçacığı Keşfedilmek Üzere Mi? | KBT Bilim, 13 Aralık 2011". 17 Ocak 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Aralık 2011. 

İlgili Araştırma Makaleleri

Parçacık fiziğinde, bozonlar Bose-Einstein yoğunlaşmasına uyan parçacıklardır; Satyendra Nath Bose ve Einstein'a atfen isimlendirilmişlerdir. Fermi-Dirac istatistiklerine uyan fermiyonların tersine, farklı bozonlar aynı kuantum konumunu işgal eder. Böylece, aynı enerjiye sahip bozonlar uzayda aynı mekânı işgal edebilirler. Bu nedenle her ne kadar parçacık fiziğinde her iki kavram arasındaki ayrım kesin belirgin değilse de, fermiyonlar genelde madde ile bileşikken, bozonlar sıklıkla güç taşıyıcı parçacıklardır.

Fermiyon, parçacık fiziğinde, Fermi-Dirac istatistiğine uyan parçacıktır. Başka bir deyişle, Enrico Fermi ve Paul Dirac'ın gösterdiği üzere, Bose-Einstein istatistiğine sahip bozonların aksine fermiyonlar, belirtilen zamanda sadece bir kuantum durumuna karşılık gelebilen parçacıklardır. Eğer iki ayrı fermiyon uzayda aynı yerde tanımlanmışsa her bir fermiyonun özelliği birbirinden farklı olmak zorundadır. Örnek olarak, iki elektron bir çekirdeğin etrafında aynı orbitalde bulunacaklarsa, bu kez aynı spin durumunda olamazlar ve her orbitalde elektronun biri yukarı diğeri aşağı spin durumundadır.

<span class="mw-page-title-main">Avrupa Nükleer Araştırma Merkezi</span> Avrupa Nükleer Araştırma Merkezi veya Fransızca adı olan Conseil Européen pour la Recherche Nucléairein kısaltmasıyla CERN, İsviçre ve Fransa sınırında yer alan, dünyanın en büyük parçacık fiziği laboratuvarını yöneten araştırma

Avrupa Nükleer Araştırma Merkezi veya Fransızca adı olan Conseil Européen pour la Recherche Nucléaire'in kısaltmasıyla CERN, İsviçre ve Fransa sınırında yer alan, dünyanın en büyük parçacık fiziği laboratuvarını yöneten araştırma kuruluşudur. 1954 yılında 12 ülkenin katılımıyla kurulmuş olan CERN'in 23 tam üyesi vardır. İsrail, Avrupa dışında yer alan tek tam üyedir. Türkiye, ortak üye statüsündedir.

ATLAS deneyi, Avrupa Nükleer Araştırma Merkezi'nde (CERN) 10 Eylül 2008'de deneyine başlanmış olan Büyük Hadron Çarpıştırıcısında kurulan altı deneyden biridir. Diğerleri CMS deneyi, LHCb deneyi, LHCf deneyi Alice deneyi ve Totem deneyidir. ATLAS ve CMS genel amaçlı, LHCb b-fiziği üzerine, LHCf deneyi astroparçacıklar fiziği, Alice ağır iyon fiziği ve Totem ise toplam tesir kesiti ölçümü üzerinedir.

<span class="mw-page-title-main">Tevatron</span>

Tevatron, Amerika Birleşik Devletleri'nin Chicago şehrinin doğusundaki Fermilab'da bulunan dairesel bir parçacık hızlandırıcısıdır. 2011 yılına kadar, kendisine 150 GeV olarak yollanan proton ve antiprotonları hızlandırıp, 1.96 TeV kütle merkezi enerjisinde 2 ayrı noktada çarpıştırmaktaydı. Bu özellik onu 2010'da CERN'deki LHC hızlandırıcısı devreye girinceye kadar dünyadaki en yüksek enerjili çarpıştırıcı yapmıştı. Yapımı $120 milyona yakın tutan Tevatron 1983 yılında tamamen bitirildi. Üzerine 1983-2011 yılları arasında büyük miktarlarda yatırımlar yapıldı.

<span class="mw-page-title-main">Standart Model</span>

Standart Model, gözlemlenen maddeyi oluşturan, şimdiye dek bulunmuş temel parçacıkları ve bunların etkileşmesinde önemli olan üç temel kuvveti açıklayan kuramdır.

Süper simetri, parçacık fiziğinde uzay-zaman simetrisinin karşılığıdır. Bu iki temel parçacıktan oluşur.

CMS deneyi, Avrupa Nükleer Araştırma Merkezi'nde (CERN) LHC hızlandırıcısı üzerinde kurulmuş olan ve 2008 yılında çalışmaya başlayarak proton-proton çarpışmaları sonucu ortaya çıkan parçacıkların izlerini ve enerjilerini ölçen beş deneyden biridir. İsmi İngilizcede Compact Muon Selenoid sözcüklerinin baş harflerinden gelir. 15 m yükseklikte, 22 m boyunda, toplam 12500 ton ağırlığa sahip bir düzenektir. Dedektörün en iç bölgesinde 3.85 Tesla kadar magnetik bir alan şiddetine sahip güçlü bir süperiletken mıknatıstır ve özellikle yeni fizik kanunlarına ait sinyalleri keşfetmek üzere dizayn edilmiştir, fakat daha önceki çarpıştırma deneylerinden daha yüksek enerjilere çıkabilmesi sebebi ile önceki deney sonuçlarını daha yüksek duyarlılıkta ölçümler yapabilmektedır.

Parçacık fiziğinde şu anda bilinen ve kuramsal olan temel parçacıkları ve bu parçacıklarla oluşturulabilen bileşik parçacıkları içeren listedir.

W ve Z bozonları, zayıf etkileşime aracılık eden temel parçacıklardır. Bu bozonların keşfi parçacık fiziğinin Standart Modeli için büyük bir başarının müjdecisi oldu.

<span class="mw-page-title-main">Büyük Elektron-Pozitron Çarpıştırıcısı</span>

Large Electron–Positron Collider, büyük elektron-pozitron çarpıştırıcısı (LEP) şimdiye kadar yapılmış en büyük parçacık hızlandırıcılarından birisiydi.

<span class="mw-page-title-main">Temel parçacık</span> Başka parçacıklardan oluştuğu bilinmeyen parçacıklar.

Temel parçacıklar, bilinen hiçbir alt yapısı olmayan parçacıklardır. Bu parçacıklar evreni oluşturan maddelerin temel yapıtaşıdır. Standart Model'de kuarklar, leptonlar ve ayar bozonları temel taneciklerdir.

Üst kuark, parçacık fiziğinde Standart Model'de tanımlanan bir parçacık. +2/3 elektrik yüküne sahip üçüncü kuşak kuarktır. 171,2 GeV/c2 kütleye sahip temel parçacık.

<span class="mw-page-title-main">Brian Cox (fizikçi)</span> İngiliz parçacık fizikçisi

Brian Edward Cox OBE Manchester Üniversitesi'nde profesörlük yapan ve Royal Society araştırma üyesi olan Büyük Britanyalı parçacık fizikçisidir. İsviçre'nin Cenevre kenti yakınlarındaki CERN'de bulunan Büyük Hadron Çarpıştırıcısı (LHC) ve ATLAS deneyi üzerinde çalışan Cox, Manchester Üniversitesi'ndeki parçacık fiziği kulübünün de bir üyesidir. ATLAS ve CMS deneylerini iyileştirmek adına uluslararası işbirliği içerisinde Ar-Ge çalıştırmaları yürütmektedir.

<span class="mw-page-title-main">Peter Higgs</span> İngiliz teorik fizikçi (1929–2024)

Peter Ware Higgs, İngiliz teorik fizikçi.

<span class="mw-page-title-main">Higgs mekanizması</span>

Higgs mekanizması, parçacık fiziğinde ayar bozonlarının kütle özelliklerinin üretim mekanizmasını açıklaması açısından önemlidir.

Nötralino, süpersimetride varsayımsal bir parçacıktır. Fermiyon ve elektrik olarak nötr olan 4 nötralino vardır. En hafifleri tipik olarak dengelidir. Tipik olarak N͂1^0 ; N͂2^0, N͂3^0 ve N͂0^4 olarak adlandırılırlar. Bu 4 durum bino ve wino'nun karışımıdır. Genelde renkli süpersimetrik parçacıklardan oluşurlar.

Parçacık fiziğinde, vektör bozon, spini 1' e eşit olan bozondur.Standart Modelde temel parçacık olarak değerlendirilen vektör bozonlar ayar bozonlarıdır.Ayar bozonları, elektromagnetizmanın fotonlarının, zayıf etkileşimlerin W ve Z bozonlarının temel etkileşimlerinin kuvvet taşıyıcılarıdır. Bazı bileşik parçacıklar vektör bozondur. Misal, bütün vektör mezonlar vektör bozondur.

<span class="mw-page-title-main">Ashutosh Kotwal</span>

Ashutosh Vijay Kotwal, Hint kökenli Amerikalı bir parçacık fizikçisidir. Duke Üniversitesi'nde Fritz London Fizik Profesörüdür ve W bozonları ve Higgs bozonu ile ilgili parçacık fiziği araştırmaları yürütür ve yeni parçacıklar ve kuvvetler araştırmaları yapmaktadır.

Parçacık fiziğinde, küçük Higgs modelleri, Higgs bozonunun TeV enerji ölçeğinde bazı küresel simetri kırılmalarından kaynaklanan pseudo-Goldstone bozonu olduğu fikrine dayanmaktadır. Küçük Higgs modellerinin amacı, elektrozayıf simetri kırılmasından sorumlu Higgs bozon(lar)ının kütlesini stabilize etmek için bu tür yaklaşık küresel simetrilerin kendiliğinden kırılmasını kullanmaktır.