Hidrojen ekonomisi
Hidrojen ekonomisi, taşıtların ve elektrik dağıtım şebekesinin dengelenmesi için ihtiyaç duyulan enerjinin, hidrojen (H2) olarak depolandığı, varsayılan bir gelecek ekonomisidir.
Mevcut Hidrojen Pazarı
Hidrojen üretimi oldukça geniş ve büyüyen bir endüstridir. Tüm dünyada, 2004 yılında üretilen toplam hidrojen 50 milyon tondur ve bu üretilen hidrojenin petrol cinsinden karşılığı 170 milyon ton yapar. Yıllık büyüme miktarı yaklaşık %10 civarındadır. Amerika Birleşik Devletlerinde, 2004 yılında yaklaşık 11 milyon ton üretim gerçekleştirilmiştir ve bu değerin enerji cinsinden karşılığı 48 gigawatt'tır (karşılaştırılacak olursa, 2003 yılındaki ortalama elektrik üretimi 442 gigawatt'tır). Hidrojenin depolanması ve nakledilmesi oldukça pahalı olduğu için, üretimin büyük çoğunluğu bölgesel olarak gerçekleşmiş ve genellikle üretici firma tarafından hemen tüketilmiştir. 2005 itibarıyla, tüm dünyada, bir yıl içerisinde üretilen hidrojenin ekonomik değeri 135 milyar ABD doları'dır.
Hidrojen, sentetik bir enerji taşıyıcısı. Üretim kaynakları son derece bol ve çeşitli. Bunların en başta gelenleri su, kömür ve doğalgaz. Hidrojen, bilinen tüm yakıtlar içerisinde birim ağırlık başına en yüksek enerji içeriğine sahip (120,000 kJ/kg). Sıvı haline dönüştürüldüğünde gaz halindeki hacminin sadece 1/700'ünü kaplıyor. Saf oksijenle yandığında sadece su ve ısı açığa çıkarıyor. Hava ile yandığında ise azot oksitler açığa çıksa da diğer yakıtlara göre kirliliği son derece az. Dünyada üretilen hidrojenin çok büyük bir bölümü, metanın su buharı ile katalitik olarak oksidasyonu yöntemi ile doğal gazdan elde edilmekte. Doğal gazın yanı sıra diğer hidrokarbon yakıtlardan da (metanol, LPG, Nafta, Benzin) su buharı ile katalitik olarak hidrojen üretilebilmekte. Hidrojen, alternatif olarak, saf oksijen veya hava ile kısmi oksidasyon, piroliz ve ototermal reforming (kısmi oksidasyon ve su buharı oksidasyonu bir arada) reaksiyonları ile de üretilebilmekte.
Bugün hidrojenin kullanımının iki temel nedeni vardır. Tüm tüketimin yaklaşık yarısı haber prosesi yardımı ile amonyak (NH3) üretmek için yapılır. Dünya nüfusu arttıkça, onu desteklemek için artmak zorunda olan tarım, amonyağa duyulan talebi sürekli büyütmektedir. Hidrojen tüketiminin diğer yarısı ise, ağır petrol kaynaklarını, yakıt olarak kullanılabilecek daha hafif türevlere dönüştürmek için gerçekleştirilir. Artan petrol fiyatları petrol şirketlerini katran gibi fakir maddelerden yakıt elde etmek için daha da cesaretlendirerek, hidrojen tüketiminde ilk uygulamaya göre daha da yüksek bir büyümeye neden olmuştur.
Eğer hidrojen üretimi için ihtiyaç duyulan enerji, rüzgâr, güneş ya da nükleer santrallerden kolay ve ekonomik bir şekilde elde edilebilseydi, hidrojenin hidrokarbon yakıt elde etmek üzere kullanılması, toplam hidrojen tüketimini örneğin ABD için 5 ila 10 kat kadar artırabilirdi. Bugün ABD'de bu amaçla hidrojen tüketimi yaklaşık yılda 4 milyon tondur. ABD için yıllık 37.7 milyon ton hidrojenin, petrolde dışa bağımlılığı kaldıracak miktarda, kömürden dönüştürülmüş sıvı yakıt elde etmek için yeterli olacağı sanılmaktadır. [1]. Ancak kömürün sıvı yakıta dönüştürülmesi dışa bağımlılığı azaltmakla birlikte sera gazı etkisi sorununa çözüm üretmemektedir.
Günümüzde hidrojen üretiminin %48'i doğal gazdan, %30'u ham petrolden, %18'i kömürden ve %4'ü suyun elektroliz yolu ile ayrıştırılmasıyla üretilmektedir.
Büyüyen pazar ve hızla artan fiyatlar hidrojenin daha ekonomik yöntemlerle üretilmesi konusunda ilgi yaratmıştır. Büyüyen hidrojen pazarının analizine dair bakınız [2]
Öngörülen merkezi Hidrojen Kaynakları
Önümüzdeki 30-40 yıllık dönemde Çin, Hindistan gibi yükselen ekonomilerin hızla artan talebiyle birlikte petrolün fiyatının bugünkü fiyatını düzeyini bekleniyor. Petrolün bugünkü ve gelecekte öngörülen durumu, ithalat bağımlılığı, fosil yakıtların yarattığı karbondioksit emisyonları ve Kyoto Sözleşmesinin emisyonlara getirdiği sınırlamalar hidrojenin hazır ve sınırsız bir alternatif olarak nitelendirilmesine neden oluyor. Şu anki problem fiyat ve altyapı maliyetleri. Bu nedenle de petrole bağlı enerji sektörünün dönüşümünün sağlanmasında özel sektör kadar destekleyici hükûmet politikaları da kilit rol oynayacak.
Hidrojen ekonomisinde, hidrojen gazı üretmek için, temel enerji kaynakları ile biyokütleler kullanılır. Petrol, kömür, doğal gaz gibi fosil yakıtların dışında kalan enerji kaynakları, fosil yakıtlara göre çok daha düşük sera gazı emisyonlarına sahiptirler. Yüksek verimlilikli hidrojen jeneratörlerinin ürettiği gazın, doğal gaz dağıtım şebekesine benzer bir sistemle dağıtılması beklenir. Ancak doğal gaza göre aşılması gereken zorluklar vardır. Örneğin hidrojenin contalardan daha kolay sızabilmesi ya da dağıtım borularında çatlaklara neden olur. Halihazırda geniş doğal gaz dağıtım şebekesi üzerinde kurulu kojenerasyon tesisleri sağladıkları elektrik dönüşümü ile yukarıda bahsedilen sisteme benzerlik gösterirler.
Tam bir hidrojen ekonomisinde, rüzgâr ya da hidroelektrik tesislerinin ürettiği enerjinin tamamı elektrik şebekesine verilmeyerek, bir kısmı ile hidrojen üretilir. Nükleer enerji tesislerinin bir çıktısı olan ısı enerjisi, elektroliz sıcaklığını artırmak şeklinde verimliliğe katkısı bulunacaktır.
Hayata Geçirilmesi
Üretim
Dünyadaki hidrojenin büyük bir kısmı denizlerde hapsolmuş durumdadır.
Hidrojen, doğal gazın buhar ile yeniden yapılandırılması ya da kısmi oksidasyonu gibi yöntemlerle fosil yakıtlardan da üretilebilirler. Wang'ın 2002'de ve Kreith'in 2004'te yaptığı çalışmalar, üretim ve dağıtım sırasında açığa çıkan emisyonlar göz önüne alınsa dahi, hidrojenin neden olduğu CO2 çıktısının, içten yanmalı motorların neden olduğu CO2'ten çok daha az olacağını göstermiştir.
Yakıt hidrojenin temelde, sudan yenilenebilir enerjilerle üretilmesi ana ilkedir. Hidrojen üretim yöntemlerinin başında suyun direkt elektrolizi gelir. Elektroliz için elektrik gereksinimi fosil yakıtlardan, hidroelektrik kaynaktan, nükleer güçten, jeotermal enerjiden, güneş, rüzgâr ve deniz dalga enerjilerinden elde olunabilir. Gelecek için üzerinde en çok durulan yöntem fotovoltaik güneş üreteçlerinin kullanılmasıdır. Hidrojen suyun ısıl parçalanması (termal krakingi) ile de üretilebilmektedir. Bir diğer hidrojen üretim yöntemi doğal gazın ve gaz hidrokarbonların buhar reformasyonudur.
Hidrojen üretimi için ayrıca kömür gazifikasyon yöntemi vardır. Gazifikasyon işlemi kolaylıkla kükürtün elimine edilmesine olanak tanıdığından çekici bulunmaktadır. Ortalama olarak 6 kg kömürden 3.785 lt benzine eşdeğer 1 kg hidrojen elde olunur. Kömür dünyanın en zengin fosil yakıtıdır. Bilinen kömür yataklarına biçilen güvenilir ömür 200 yıl kadarsa da, bunun 400 yıla uzanabileceği söylenmektedir. Katı atıklar ve kanalizasyon materyalleri de hidrojen üretimi için hammadde olup, gazifikasyon işlemine bağlı olarak, sentez gazının hava veya oksijenle reformasyonu hidrojen vermektedir. Termokimyasal çevrimlerle sudan, fotokimyasal işlemle organometalik bileşikler veya enzim su karışımından hidrojen üretilebilir
Hidrojen üretimi sırasında tüketilen enerji miktarı hakkında bazı endişeler vardır. Hidrojen üretimi içerisinde hidrojen barındıran su ya da fosil yakıt gibi kaynaklara ihtiyaç duyar. Fosil yakıtların kullanılması doğal kaynakların tükenmesine ve buna karşın CO2 üretilmesine neden olurken, suyun elektroliz edilmesi için ihtiyaç duyulan enerjinin önemli bir kısmı, yine fosil yakıtların elektrik enerjisine dönüştürülmesi yöntemiyle sağlanmaktadır. Bu açıdan, hidrojen yakıtının, bugün için fosil yakıtlardan tamamen bağımsız ya da hiçbir emisyona neden olmayan bir yöntem olduğunu iddia etmek oldukça güçtür.
Eğer elektrik enerjisi üretimi, kimyasal yöntemlere dayanıyor ise, hidrojeni üretmek için de doğrudan kimyasal yöntemlere başvurulması daha uygundur. Fakat elektrik enerjisi üretimi, hidroelektrik ya da rüzgâr jeneratörleri gibi mekanik yöntemlere dayanıyor ise, hidrojenin suyun elektroliz edilmesi yöntemi ile üretilmesi uygun olabilir. Çoğunlukla tüketilen elektriğin maliyeti, üretilen hidrojenin fiyatından daha yüksek olduğu için, elektroliz yöntemi hidrojen üretiminde çok küçük bir paya sahiptir.
Eğer elektrik enerjisi üretimi, ısı (nükleer ya da güneş) enerjisi yöntemine dayanıyor ise, hidrojen üretmek için en uygun yöntem yüksek sıcaklıklı elektrolizdir. Düşük sıcaklıklı elektrolizden farklı olarak suyun yüksek sıcaklıklı elektrolizi (YSE) başlangıçtaki ısı enerjisinin önemli bir kısmını kimyasal enerjiye (hidrojen) dönüştürme kabiliyetine sahiptir. Potansiyel olarak prosesin enerji verimi %50 daha fazladır. İhtiyaç duyulan enerjinin bir kısmı ısı ile sağlandığı için kimyasal dönüşüme konu elektrik enerjisi daha az tüketilir. YSE'nin laboratuvar uygulamaları yapılmış olmasına karşın henüz endüstriyel bir uygulaması yoktur.
Depolama ve taşıma
Üretilen hidrojen depolanabilmekte, boru hatları ve/veya tankerlerle taşınabilmektedir. Doğal gaz boru hatlarının gelecekte hidrojen taşınması için kullanılabileceği belirtilmektedir. Hidrojenin depolama yöntemleri; tüplenmiş alçak basınçlı gaz (12 bar) ve yüksek basınçlı gaz (150 bar) dışında sıvılaştırılmış biçimde, kriyojenik (dondurulmuş) tanklarda (220 kPa) ve metalik hidrid biçiminde olabilmektedir. Hidrojen gaz biçiminde boru hatlarıyla taşınabildiği gibi, yüksek basınçlı gaz ve sıvılaştırılmış biçimde tankerlerle taşınabilmektedir. Gaz hidrojenin zeolit ortamlarda depolanması çalışmaları vardır. Ancak, enerji içeriğinin yüksekliği açısından gaz yerine sıvı hidrojen depolama teknikleri üzerinde durulmaktadır.
Hidrojenin hidridlerle depolanması ve taşınması da önemle ele alınmaktadır. Geliştirilen hidridler; titanyum alaşımları (özellikle demir-titanyum), paladyum alaşımları, zirkonyum alaşımları, titanyum-zirkonyum-vanadyum-nikel alaşımları, titanyum-zirkonyum-vanadyum-demir-krom-mangan alaşımları, mağnezyum-nikel alaşımları gibi materyallerle oluşturulmaktadır. Düşük sıcaklık ve yüksek sıcaklık hidridleri vardır. Demir-titanyum alaşımı düşük sıcaklık hidridi iken, mağnezyum-nikel alaşımı yüksek sıcaklık hidrididir. Düşük ve yüksek sıcaklık hidridlerinin kombinasyonu da kullanılmaktadır. Metal hidridler paket olarak taşınmaya uygundur.
Maliyet
Yakıtların ekonomik kıyaslaması efektif maliyete göre yapılır. Efektif maliyet ise çıplak maliyet ve çevre zararlarını içeren maliyet ile kullanım veriminin fonksiyonudur. İç maliyet de denilen çıplak maliyet, alışılagelmiş görünür maliyettir. Çevre zararlarını içeren dış maliyet ise yeni bir kavramdır. Burada yakıtın birim miktarının çevrede oluşturduğu maddi zarar anlaşılmaktadır. 1990 ABD verileri ile fosil yakıt, kömür-sentetik ve güneş hidrojen sistemlerinin efektif maliyetleri Tablo 12.4'te gösterilmiştir. Efektif maliyete göre hesaplanan ekonomiklik faktörü hidrojende 1 iken doğal gaz dışındaki fosil yakıtlarda 0.37-0.61 arasında değişmekte olup, hidrojenden daha az ekonomiktirler. Ancak, doğal gazın ekonomiklik faktörü bugün için hidrojenden yüksektir.
Yukarıda açıklandığı gibi, temelde efektif maliyet önemli olmakla birlikte, günümüzde maliyet karşılaştırmaları, daha çok iç ya da çıplak maliyetle yapılmaktadır. Bu nedenle, yalnız iç maliyet açısından bakıldığında, en ucuz hidrojen üretimi kömürden sağlanmakta, onu hidro-hidrojen izlemektedir. En düşük hidrojen maliyeti, ulaştırma sektörü için benzinden ucuz olabilmektedir. Dış maliyet, yani çevre maliyeti göz önüne alınmaksızın hidrojen endüstri, konut ve elektrik sektörlerinde doğal gazdan 1.5-3.7, petrol ürünlerinden 1.3-3.5 ve kömürden 4.7-5.8 kat daha pahalı görünmektedir. Ancak, yakıt hidrojenin kütlesel üretimi yapılmadığından bu karşılaştırmalar göreceli kalmaktadır.
Diğer kimyasal yakıtlar: bakınız Alternatif yakıt
- Yeşil yakıtlar. Bitkilerden elde edilen, etanol, biyodizel gibi biyoyakıtların kullanımı ekonomideki küçük değişikliklerle gerçekleştirilebilir. Bununla birlikte, kayda değer miktarda petrol tüketiminin yerini alabilmesi için, çok geniş tarım alanlarına ihtiyaç duyulduğundan, bütün ülkeler için uygun bir çözüm olmayabilir.
- Sera gazı-nötr alkol. Hidrojen ekonomisinde hidrojen, tamamıyla elektrikli olmayan araçlarda kullanılmak üzere, yenilenebilir bir enerji kaynağı olarak elde edilir. Hidrojene diğer bir teorik alternatif ise, hidrojen ve karbondioksitin birlikte kullanılarak, etanol ya da metanol gibi sıvı bir yakıta dönüştürülmesidir. Hidrojeni, üretildiği tesisten taşımak yerine, aynı tesiste diğer sıvı yakıtlara dönüştürerek, mevcut dağıtım ağında taşınması ve kullanılması sağlanabilir. Böylece hidrojen gazının taşınması ve depolanması ile ilgili zorluklar aşılırken, karbondioksit gazının tüketilmesi ile ilgili endüstriyel bir alternatif yaratarak, sera gazlarının azaltılması ile ilgili önemli bir adım atılabilir.
Çevresel kaygılar
Yakıtın zehirliliği, yanma ürünlerinin zehirliliği, diffüzyon katsayısı, ateşleme enerjisi, patlama enerjisi, alev emissivitesi gibi faktörlere göre yapılan emniyet değerlendirmesi açısından, hidrojen en emniyetli yakıttır. Hidrojenin emniyet faktörü 1 iken, benzinde 0.53 ve metanda 0.80 olmaktadır. Kısacası benzin ve doğal gaz hidrojene göre tehlikeli yakıtlardır. Hidrojenin benzin ve metana göre yanma tehlikesi daha azdır.
Yakıtlar için önemli olan bir özellik de çevresel uygunluktur. Fosil yakıt kullanımının hava kalitesi, insanlar, hayvanlar, plantasyonlar ve ormanlar, akuatik ekosistemler, insan yapısı yapılar, açık madencilik, iklim değişikliği, deniz seviyesi yükselmesi üzerindeki olumsuz etkilerinden kaynaklanan çevre zararları dünya genelinde, 1990 verileriyle; kömür için 9.8 ABD $/GJ, petrol için 8.5 ABD $/GJ ve doğal gaz için 5.6 ABD$/GJ olarak saptanmıştır.
Çevresel zarar ve çevresel uygunluk faktörü için fosil yakıt sistemi, kömür/sentetik yakıt sistemi ve güneş-hidrojen sistemi (güneş PV panellerinden sağlanacak enerji ie hidrojen üretim sistemi), bu verilerin ışığında karşılaştırılmıştır. Karşılaştırma sonuçları Tablo 12.2'de yer almaktadır. Güneş-hidrojen üretim sisteminde çevresel zarar 0.46 ABD $/GJ gibi yok denecek düzeye düşmekte ve çevresel uygunluk faktörü üst sınıra çıkarak 1 olmaktadır.
Kullanımındaki tehlikeler
Hidrojen, basında nispeten tehlikeli bir gaz olarak tanıtılmıştır ve gerçekte de hidrojen hava karşımı diğer gazlardan daha patlayıcı/yanıcı özelliğe sahiptir. Hidrojen gazı depolandığı tanktan sızabilir ve bir çatlak olması durumunda çok hızlı boşalır. Hidrojen alevi zor görülür ve hidrojen yangınıyla mücadele etmek de oldukça zordur. En çok bilinen hidrojen yangını LZ 129 Hindenburg felaketidir. Yolcuların 2/3 ile mürettebat kurtulmuş, ölenlerin büyük çoğunluğu atlayanlar olmuştur.
Örnekler ve Pilot Uygulamalar
Hidrojenin taşımacılık amacıyla dağıtımı İzlanda, Almanya, Kaliforniya, Japonya28 Ağustos 2006 tarihinde Wayback Machine sitesinde arşivlendi. ve Kanada'da test edilmektedir.
Yakıt pilli elektrik santralları yüksek enerji verimlerinin yanı sıra, çok az yer kaplamaktadırlar. Örneğin 2 MW'lık yakıt pilli santralın kapsadığı alan 20 m2'den az olmaktadır. Büyük yer kapsayan konvansiyonel santralların yerleşim birimlerinden belli uzaklıkta kurulması ve elektrik iletimi sorunu, geleceğin yakıt pilli elektrik santralları ile çözüme kavuşacak görünmektedir. Gelecekte tüketicilerin bulundukları yerin yakınına kurulacak yakıt pilli santrallarla iletim ve dağıtım kayıpları olmaksızın gereksinimler karşılanabilecektir.
Hidrojenin alevsiz yanması için katalitik yakma düzenleri geliştirilmiştir. Hidrojenin katalitik yanması mutfak ocaklarına, fırınlara, su ısıtıcılara ve özel sobalara uygulanmıştır. Yine gösterim amacıyla bu tür beyaz eşya üreten firmalar vardır. Böylece, konutlarda yakıt olarak hidrojen kullanımının önü açılmış bulunmaktadır. Hidrojenin boru hatları ile evlere kadar ulaştırılması olanaklı olup, bu konuda projeler geliştirilmekte ve doğal gaz hatlarından yararlanılması tasarlanmaktadır. Hidrojen enerjisi alanında çeşitli ülkelerin işbirliği sonucu uluslararası programlar başlatılmıştır. Avrupa Topluluğu ile Kanada'nın EURO-QUEBEC (hidro-hidrojen) projesi, Norveç ve Almanya'nın NHEG projesi, Almanya ve Suudi Arabistan'ın HY-SOLAR (güneş-hidrojen) Projesi, İskandinav ülkeleri ile Yunanistan'ın işbirliği, Uluslararası Enerji Ajansı (IEA) hidrojen enerjisi projeleri, Birleşmiş Milletler UNIDO-ICHET hidrojen çalışmaları bunlara örnek gösterilebilir. Henüz uygulanmasına girişilememiş olan UNIDO-ICHET projesi kapsamında, İstanbul'da Hidrojen Enstitüsü kurulması gündemdedir
Bu çalışmalardan Euro-Québec Hidro-Hidrojen Pilot Projesi (EQHHPP) 100 MW'lık bir kapasitededir. Bu proje ile Kanada'da hidrolik kaynaktan elde olunacak elektrik enerjisi suyun elektrolizinde kullanılacak, üretilecek gaz hidrojen, yine Kanada'da sıvı hidrojen (LH2), amonyak (NH3) ve metilsiklohekzan (MCH) biçiminde bağlanarak, Atlantikten gemilerle Avrupa'ya taşınacaktır. Avrupa'da enerji uygulaması ile gaz ve/veya sıvı hidrojene dönüştürülerek konutlarda, termik santrallarda, kent otobüslerinde ve araçlarda, uçaklarda yakıt olarak kullanılacak, ayrıca kimya endüstrisi için toluen üretilecektir. Enerji ekonomisi analizlerine göre Kanada'daki 100 MW'lık hidrolik güç, Almanya Hamburg'da 74 MW'lık hidrojen gücüne dönüşmüş olacaktır. Bu güçle yılda 614 GWh enerji sağlanacaktır. Proje tesis maliyeti 415 milyon ECU (~514.4 milyon ABD $'ı) dır.
Bir teknoloji standartsız kökleşemeyeceği ve tanımlanamayacağı için, hidrojen enerjisi konusunda uluslararası standart çalışmaları yapılmaktadır. Uluslararası Standartlar Organizasyonu (ISO) tarafından ISO/TC-197 Komitesi oluşturularak, hidrojen enerjisi için uluslararası standartlar çalışmalarına girişilmiştir. Standart çalışmaları tanımlar, ölçümler, taşıma, emniyet, araçlar, uçaklar, elektro-kimyasal donanımlar, hidridler, çevre ve uygulama alanlarını kapsamaktadır.
Değişik senaryolara göre 2025 yılında dünya genel enerji tüketiminin ulaşacağı düzey 12 000-16 000 Mtep olarak kestirilmektedir. Aynı yılda dünyada 1 500-2 600 Mtep hidrojen enerjisinin kullanılması planlanmaktadır. Böylece, bu raporda göz önüne alınan etüt periyodu (2000-2025 dönemi) sonunda, dünya birincil enerjisinin % 9-21 açıklığı arasındaki bir bölümü hidrojene dönüştürülerek kullanılabilecek demektir. Bu oran daha çok % 10 olarak öngörülmektedir.
Kuzey Atlantik ada ülkesi İzlanda, 2050 yılında hidrojen ekonomisine geçmiş olma kararını alan tek ülkedir. Bugün için tüm taşıtlar ve balıkçı filoları için ihtiyaç duyduğu petrolün tamamını ithal eden İzlanda, sahip olduğu jeotermal ve hidroelektrik kaynakları ile hidrokarbon enerji kaynaklarından daha düşük maliyetle elektrik üretebilmektedir.
İzlanda halihazırda sahip olduğu enerji fazlasını, ihraç edilebilir ürünlere ve hidrokarbonlara dönüştürmektedir. 2002 yılında, amonyum (NH3) üretiminde kullanılmak üzere, elektroliz yöntemi ile 2000 ton hidrojen gazı üretmiştir. Amonyum tüm dünyada üretilir ve dağıtılır. Amonyum maliyetinin %90'ını enerji oluşturur. Ayrıca İzlanda, maliyeti büyük ölçüde enerjiye dayanan, alüminyum ergitme tesisi kurmaktadır. Reykjavík'te sıkıştırılmış hidrojenle çalışan küçük bir şehir içi otobüs filosu deneme amaçlı faaliyetini sürdürmektedir [3]24 Temmuz 2012 tarihinde Archive.is sitesinde arşivlendi. Balıkçı filolarının hidrojenle enerjilendirilmesine dair araştırmalar sürmektedir.
Norveç'in bir adası Utsira'da hidrojen ekonomisinin denendiği bir pilot proje sürdürülmektedir. Rüzgâr jeneratörleri ile üretilen enerjinin fazlası, elektroliz yöntemi ile hidrojene dönüştürülür ve rüzgârın yetersiz olduğu zamanlarda tekrar elektrik elde etmek üzere hidrojen gazı olarak depolanır.
İngiltere 2004 yılının ocak ayında, Londra'da iki otobüsle başladığı yakıt hücresi deneme programını 2005 yılının Aralık ayında tamamlamıştır [4]23 Ağustos 2006 tarihinde Wayback Machine sitesinde arşivlendi..
The Hydrogen Expedition, tüm dünyanın çevresinde dolaşacak ve hidrojen yakıt hücrelerinin yapabileceklerini gösterecek, hidrojen yakıt hücresi ile çalışan bir geminin inşasını sürdürmektedir.
Batı Avustralya Planlama ve Altyapı Departmanı Perth şehrinde, Sürdürülebilir taşıma enerjisi programı için üç adet Daimler Chrysler Citaro yakıt hücreli otobüsleri ile denemelerini sürdürmektedir. Deneme 2004 yılının Eylül ayında başlamış olup, 2006 yılının Eylül ayında sona erecektir. Otobüsler proton dönüşümlü membran sistem yakıt hücresi ile çalışmakta olup, Perth'in güneyindeki Kwinana'da kurulu BP'nin bir yan ürünü olarak üretilen ham hidrojen ile denenmektedirler.
Hidrojen enerjisi ve Türkiye
Türkiye'nin 7. Beş Yıllık Kalkınma Planı Genel Enerji Özel İhtisas Komisyonu Yeni ve Yenilenebilir Enerji Kaynakları Raporu'nda, hidrojen teknolojisine değinilmekle birlikte, resmîleşen kalkınma planında hidrojen enerjisinin adı geçmemektedir. Hidrojen konusu üniversitelerimiz ve araştırma kuruluşlarımızda çok sınırlı biçimde ele alınmaktadır.
TÜBİTAK Marmara Araştırma Merkezi'nde hidrojen alanında Uluslararası Enerji Ajansı programları kapsamında çalışma başlatılmak istenmişse de, söz konusu işbirliği 1996 yılında kesilmiştir. Birleşmiş Milletler (UNIDO) desteği ile ICHET projesi kapsamında, İstanbul'da Hidrojen Enstitüsü kurulması konusu gündemdir. 20-22 Kasım 1996 tarihlerinde Viyana'da yapılan 16. UNIDO Endüstriyel Kalkınma Kurulu Toplantısı'nda, UNIDO işbirliği ile Türkiye'de Uluslararası Hidrojen Enerjisi Teknolojileri Merkezi (ICHET) kurulması kararı alınmıştır. Buna göre, UNIDO hukuksal çerçevesinde özerk bir kurum olarak çalışacak ICHET, İstanbul'da kurulacaktır.
ICHET'in tasarlanan amacı, gelişmiş ve gelişmekte olan ülkeler arasında hidrojen teknolojileri köprüsünü oluşturmak, hidrojen teknolojilerinin geliştirilmesini sağlamak ve uygulamalı Ar-Ge çalışmalarını yürütmektir.
ICHET'in işlevi; kısa ve uzun dönemli eğitim vermek, bilimsel toplantılar düzenlemek, danışmanlık hizmetleri sunmak ve benzeri kuruluşlarla işbirliği oluşturmak biçiminde belirlenmiştir. Merkezin çalışma konuları; hidrojen enerjisi politikaları, hidrojen ekonomisi, enerji ve çevre, hidrojen üretim teknolojileri, hidrojen depolama teknikleri, hidrojen uygulamaları ve demonstrasyonlar olacaktır.
Türkiye, ilk beş yıllık dönem için arazi, tesis, ilk yatırım ekipmanı ve işletme faaliyetlerini finanse etmek üzere, 40 milyon ABD $'ı verecektir. ICHET projesi Türkiye'nin hidrojen çağına tutarlı biçimde adım atmasını sağlayacak, Türkiye'ye avantaj kazandıracak önemli bir girişimdir.
TÜBİTAK-TTGV Bilim Teknoloji-Sanayi Tartışmaları Platformu tarafından yapılan çalışma ile 1998 yılında tamamlanan, Enerji Teknolojileri Politikası Çalışma Grubu Raporu'nda, hidrojen enerjisinin önemi ve yapılması gerekenler sıralanmıştır. Hidrojen enerjisi ile ilgili çalışmaların Ar-Ge alanları arasında yer alması gerektiği belirtilmiştir. Hidrojen programlarının esas itibarı ile uzun döneme yönelik olduğu vurgulanmakla birlikte, mevcut enerji alt yapısıyla kısa dönemli uygulamalar üzerinde durulması, ICHET'in kurulması için başlatılmış olan çalışmaların hızla olumlu sonuca götürülmesi istenmiştir. Rapor, Bilim ve Teknoloji Yüksek Kurulu tarafından uygun bulunarak, Başbakanlık kanalıyla Enerji ve Tabii Kaynaklar Bakanlığı'na sunulmuştur.
Türkiye'de hidrojen yakıtı üretiminde kullanılabilecek olası kaynaklar; hidrolik enerji, güneş enerjisi, rüzgâr enerjisi, deniz-dalga enerjisi, jeotermal enerji ve adım atılması gereken nükleer enerjidir. Türkiye gibi gelişme sürecinde ve teknolojik geçiş aşamasındaki ülkeler açısından, uzun dönemde fotovoltaik güneş-hidrojen sistemi uygun görülmektedir. Fotovoltaik panellerden elde olunacak elektrik enerjisi ile suyun elektrolizinden hidrojen üreten bu yöntemde, 1 m3 sudan 108.7 kg hidrojen elde olunabilir ki, bu 422 litre benzine eşdeğerdir.
Türkiye'nin hidrojen üretimi açısından bir şansı, uzun bir kıyı şeridi olan Karadeniz'in tabanında kimyasal biçimde depolanmış hidrojen bulunmasıdır. Karadeniz'in suyunun % 90'ı anaerobiktir ve hidrojensülfid (H2S) içermektedir. 1000 m derinlikte 8 ml.lt-1 olan H2S konsantrasyonu, tabanda 13.5 ml.lt-1 düzeyine ulaşmaktadır. Elektroliz reaktörü ve oksidasyon reaktörü gibi iki reaktör kullanılarak, H2S den hidrojen üretimi konusunda yapılmış teknolojik çalışmalar vardır. Bu konuda yapılmış bir diğer teknoloji geliştirme çalışması, semikondüktör partikülleri kullanarak fotokatalitik yöntemle hidrojen üretimidir. Güneş ve rüzgâr enerjisinden yararlanarak, Karadeniz'in H2S içeren suyundan hidrojen üretimi için literatüre geçmiş bilimsel araştırma olup, Bulgaristan proje geliştirmeye çalışmaktadır.
Teknolojik verilere ve Türkiye'nin enerji-ekonomi verilerine göre, 1995-2095 arasında güneş-hidrojen sistemi ile yapılabilecek yakıt üretimi ve bunun fosil yakıtlarla rekabet olanağı, özel bir simülasyon modeli kapsamında bilgisayar çözümleri ile araştırılmıştır. Bu ulusal modelde, hidrojen üretiminin artışı için yavaş ve hızlı olmak üzere iki ayrı seçenek alınmıştır. Her iki seçenekte de 2010-2015 döneminde hidrojen enerjisi maliyetinin fosil enerji maliyetinin altına düşebileceği, ancak yapılabilecek yerli hidrojen üretiminin 2.3 Mtep'in altında kalacağı görülmüştür.
2020-2025 döneminde yerli hidrojen üretiminin 10 Mtep'in üzerine çıkabileceği, 2015 yılından sonra fosil yakıt dışalımını azaltıcı etki yapacağı bulgulanmıştır. Giderek sağlanacak hidrojen üretimi artışıyla, yerli petrol, doğal gaz ve kömür üretiminin sıfırlanabileceği 2065 yılında, yaklaşık 290 Mtep hidrojen üretilebileceği görülmüştür. Hidrojen üretimine bağlı biçimde ulusal kazancın artacağı saptanmıştır. Model bulguları, diğer bazı ülkeler ve dünya geneli için yapılmış benzer çalışmalara koşut durumdadır.
ABD'nin Enerji Departmanı tarafından, 2025 yılında Amerika'nın toplam enerji tüketiminin % 10'unun hidrojenle karşılanması ve böylece petrol dışalımının yarı yarıya azaltılmasının hedeflediği göz önüne alınırsa, Türkiye için yapılmış simülasyon modeli çalışmasının bir abartma olmadığı anlaşılır. Kuşkusuz, bu bir bilimsel senaryo olup, gerçekleşmesi koşullara ve alınacak önlemlere bağlıdır. Modelin verdiği en önemli sonuç, hidrojenin Türkiye için umut olabileceğidir.
Ayrıca bakınız
- Hidrojen depolama
- Hidrojen teknolojileri
- Hidrojen üretimi
Dış bağlantılar
- European Fuel Cell Forum - Papers by a set of fuel cell engineers, many concerning the hydrogen economy.
- 20 Hydrogen myths - Published by the Rocky Mountain Institute, a major hydrogen economy proponent.
- Transmitting 4,000MW of New Windpower from North Dakota to Chicago: New HVDC Electric Lines or Hydrogen Pipelines - Paper study comparing projected costs.
- Hydrogen Use24 Haziran 2019 tarihinde Wayback Machine sitesinde arşivlendi. - News about the use of hydrogen as a clean fuel.
- FreedomCAR25 Eylül 2007 tarihinde Wayback Machine sitesinde arşivlendi. - U.S. hydrogen powered car initiative.
- Hydrogen Pathways Program - Hydrogen transportation research and graduate program at the Institute of Transportation Studies at UC Davis.
- Hypercar Concept
- PolyFuel - Commercial methanol fuel cell technology.
- www.physicstoday.org article26 Kasım 2007 tarihinde Wayback Machine sitesinde arşivlendi. - Summary of avenues of research into lower-cost hydrogen production, better storage, and lower-cost fuel cells.
- Bottling the hydrogen genie - Article from The Industrial Physicist.
- Article advocating the use of nuclear power to produce hydrogen
- "Boron: a better energy carrier than hydrogen?" paper by Graham Cowan30 Ağustos 2006 tarihinde Wayback Machine sitesinde arşivlendi.
- The Hydrogen Expedition - an organization attempting to circumnavigate the globe in a hydrogen-powered ship.
- NOVA scienceNOW10 Eylül 2006 tarihinde Wayback Machine sitesinde arşivlendi. - A 14 minute video of the NOVA broadcast about hydrogen fuel cell cars that aired on PBS, July 26, 2005. Hosted by Robert Krulwich with guests, Ray ve Tom Magliozzi, the Car Talk brothers.
- "Hidrojen ekonomisi, on season 15, episode 6". simple (İngilizce). PBS. 2005. 2006 tarihinde kaynağından arşivlendi.
- Shell's hydrogen powered bus in Amsterdam
- Hydrogen Fuel Cell News31 Ağustos 2006 tarihinde Wayback Machine sitesinde arşivlendi. The latest news about fuel cell technologies
- Hydrogen Refueling Stations Mapped on Platial.
- USDOE Hydrogen from Coal Research
- American Hydrogen Association non-profit association of individuals and institutions, technical and non-technical
- Angstrom Power29 Ağustos 2006 tarihinde Wayback Machine sitesinde arşivlendi. - Commercial hydrogen fuel cell technology designed for portable devices.
- UK Low Carbon and Fuel Cell Knowledge Transfer Network
- Scientific American Magazine (July 2006 Issue) A Power Grid for the Hydrogen Economy