İçeriğe atla

Hidrojen bağı

Su molekülü; yeşil çizgilerle birleştirilmiş moleküller hidrojen bağını temsil eder.
Su molekülleri arasındaki hidrojen bağları modeli
Gümüş uçlu silikon üzerindeki naftalintetrakarboksilik diimid moleküllerinin, hidrojen bağı yoluyla etkileşime giren, 77 K'de alınan AFM görüntüsü.[1] (Üstteki görüntüdeki "Hidrojen bağları", görüntüleme tekniğinin yapaylıkları nedeniyle abartılmıştır.[2][3][4])

Kimya'da, hidrojen bağı (veya H-bağı) öncelikle daha elektronegatif bir "verici" atom veya gruba (Dn) kovalent bağla bağlanan bir hidrojen (H) atomu ile ve yalnız bir çift elektron taşıyan başka bir elektronegatif atom (hidrojen bağı alıcısı (Ac)) arasındaki elektrostatik çekim kuvvetidir.

Böyle etkileşimli bir sistem genel olarak Dn−H···Ac olarak gösterilir ki burada düz çizgi polar kovalent bağ'ı ve noktalı veya kesikli çizgi ise hidrojen bağını belirtir.[5] En sık görülen verici ve alıcı atomlar 2. periyot elementleri azot (N), oksijen (O) ve flor (F)'dur. Genelde bağ, hidrojenin flor, oksijen ve azot gibi elektronegatifliği yüksek atomlarla yapmış olduğu kuvvetli bir etkileşim türüdür.

Hidrojen bağları moleküller arası (ayrı moleküller arasında oluşabilir) veya molekül içi (aynı molekülün parçaları arasında) olabilir.[6][7][8] Hidrojen bağının enerjisi geometriye, çevreye ve belirli verici ve alıcı atomların doğasına bağlıdır ve 1 ila 40 kcal/mol arasında değişebilir.[9] Bu onları van der Waals etkileşiminden biraz daha güçlü, tam kovalent veya iyonik bağlardan ise daha zayıf kılar. Hidrojen bağı, su gibi inorganik moleküllerde ve DNA ve proteinler gibi organik moleküllerde meydana gelebilir. Hidrojen bağları, kâğıt ve keçeli yün gibi malzemeleri bir arada tutar ve ayrı kağıt yapraklarının ıslanıp kuruduktan sonra birbirine yapışmasını sağlar.

Hidrojen bağı aynı zamanda N, O ve F bileşiklerinin diğer benzer yapılarla karşılaştırıldığında sıra dışı görünen birçok fiziksel ve kimyasal özelliğinden de sorumludur. Özellikle moleküller arası hidrojen bağı, çok daha zayıf hidrojen bağlarına sahip olan diğer grup-16 hidritlere kıyasla suyun yüksek kaynama noktasından (100 °C) sorumludur.[10] Molekül içi hidrojen bağı, proteinlerin ve nükleik asitlerin ikincil ve üçüncül yapılarından kısmen sorumludur.

Proteinler ve nükleik asitler gibi makromoleküller içinde, aynı molekülün iki parçası arasında var olabilir.

Hidrojen bağı ismi, bağın bir hidrojen atomunu kapsamasından gelir.

Eğer hidrojen bağı atomu iki atom arasında ortak kullanılıyor ise meydana gelen iki molekül arasındaki zayıf bir bağdır.

Hidrojen bağları genellikle oksijen ve azot gibi negatif elektrik yüklü atomlarla diğer bir negatif yüklü atomlara kovalent olarak bağlanmış hidrojen atomları arasında oluşan bağlardır.

Dipol dipol etkileşmesinin kimyadaki en bariz örneğidir.

Hidrojen Bağı Van der Waals bağından güçlüdür, molekülleri arasında daha güçlü etkileşim olan maddenin kaynama noktası daha yüksektir.Bu yüzden hidrojen bağı içeren maddelerin erime - kaynama noktaları Van der Waals bağı içeren maddelere göre daha yüksektir.

İki farklı molekül birbirleriyle hidrojen bağı oluşturabilir.

(F,O,N) barındıran moleküller dışında hidrojen sülfürün de (H₂S) bağ yapabildiği keşfedilmiştir.

Bağlanma

Kendi kendine birleşen dimer kompleksindeki moleküller arası hidrojen bağının bir örneği.[11] Hidrojen bağları noktalı çizgilerle temsil edilir.
Asetilasetondaki molekül içi hidrojen bağı, enol tautomerinin dengelenmesine yardım eder.

Tanımlar ve genel özellikler

Bir hidrojen bağında, hidrojene kovalent olarak bağlanmayan elektronegatif atom, proton alıcısı olarak adlandırılırken, hidrojene kovalent olarak bağlanan atom, proton donörü olarak adlandırılır. Bu terminoloji IUPAC tarafından tavsiye edilmektedir.[5] Vericinin hidrojeni protiktir ve bu nedenle bir Lewis asidi gibi davranabilir ve alıcı ise Lewis bazıdır. Hidrojen bağları H···Y sistemi olarak temsil edilir ki burada noktalar hidrojen bağını temsil eder. Hidrojen bağı sergileyen sıvılara (su gibi) ilişkili sıvılar denir.

Hidrojen bağı veren (vericiler) ve hidrojen bağı kabul eden gruplara (alıcılara) örnekler
Asetik asidin siklik dimeri; kesikli yeşil çizgiler hidrojen bağlarını temsil eder

Hidrojen bağları, elektrostatiklerin (çok kutuplu-çok kutuplu ve çok kutuplu- kaynaklı çok kutuplu etkileşimler), kovalans (yörünge örtüşmesiyle yük aktarımı) ve dispersiyonun (London kuvvetleri) birleşiminden kaynaklanır.[5]

Daha zayıf hidrojen bağlarında,[12] hidrojen atomları kükürt (S) veya klor (Cl) gibi elementlere bağlanma eğilimindedir; karbon (C) bile, özellikle karbon veya komşularından biri elektronegatif olduğunda (örneğin, kloroform, aldehitler ve terminal asetilenlerde) bir donör görevi görebilir.[13][14] Yavaş yavaş, N, O veya F dışındaki donörleri ve/veya elektronegatifliği hidrojeninkine yaklaşan (çok daha elektronegatif olmak yerine) alıcı Ac'yi içeren daha zayıf hidrojen bağının birçok örneğinin olduğu fark edildi. Her ne kadar zayıf (≈1 kcal/mol) olsa da, "geleneksel olmayan" hidrojen bağı etkileşimleri her yerde bulunur ve birçok türde malzemenin yapısını etkiler.

Hidrojen bağının tanımı zamanla bu daha zayıf çekici etkileşimleri içerecek şekilde kademeli olarak genişletildi. 2011 yılında bir IUPAC Görev Grubu, IUPAC Pure and Applied Chemistry dergisinde yayınlanan, hidrojen bağının modern, kanıta dayalı bir tanımını önerdi. Bu tanım şöyledir:

Hidrojen bağı, X'in H'den daha elektronegatif olduğu bir molekülden veya bir moleküler parçadan (X−H) gelen bir hidrojen atomu ile aynı veya başka bir moleküldeki bağ oluşumuna dair kanıtların bulunduğu bir atom veya atom grubu arasındaki çekici bir etkileşimdir.[15]

Bağ kuvveti

Hidrojen bağlarının gücü zayıftan (1–2  kJ/mol) güçlüye (biflorür iyonunda 161,5 kJ/mol, HF
2
) kadar değişebilir.[16][17] Buhardaki tipik entalpiler şunları içerir:[18]

  • F−H···:F
    (161.5 kJ/mol veya 38.6 kcal/mol), illustrated uniquely by HF
    2
  • O−H···:N (29 kJ/mol veya 6.9 kcal/mol), resimli su-amonyak
  • O−H···:O (21 kJ/mol veya 5.0 kcal/mol), resimli su-su, alkol-alkol
  • N−H···:N (13 kJ/mol veya 3.1 kcal/mol), resimli amonyak-amonyak ile gösterilmiştir
  • N−H···:O (8 kJ/mol or 1.9 kcal/mol), resimli su-amid
  • OH+
    3
    ···:OH
    2
    (18 kJ/mol[19] veya 4.3 kcal/mol)

Moleküller arası hidrojen bağlarının gücü çoğunlukla donör ve/veya alıcı birimleri içeren moleküller arasındaki denge ölçümleriyle değerlendirilir; çoğunlukla çözelti içindedir.[20] Molekül içi hidrojen bağlarının gücü, hidrojen bağı olan ve olmayan konformerler arasındaki denge ile incelenebilir. Karmaşık moleküllerde de hidrojen bağlarının tanımlanmasına yönelik en önemli yöntem kristalografi, bazen de NMR-spektroskopidir. Van der Waals yarıçaplarının toplamından daha küçük olan donör ve alıcı arasındaki mesafeler gibi yapısal ayrıntılar, hidrojen bağı kuvvetinin göstergesi olarak alınabilir. Bir şema aşağıdaki biraz keyfi sınıflandırmayı verir: 15 ila 40 kcal/mol, 5 ila 15 kcal/mol ve >0 ila 5 kcal/mol olanlar sırasıyla güçlü, orta ve zayıf olarak kabul edilir.[17]

C-H bağlarını içeren hidrojen bağları hem çok nadir hem de zayıftır.[21]

Kaynakça

  1. ^ Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N.R.; Kantorovich, L.; Moriarty, P. (2014). "Mapping the force field of a hydrogen-bonded assembly". Nature Communications. Cilt 5. s. 3931. Bibcode:2014NatCo...5.3931S. doi:10.1038/ncomms4931. PMC 4050271 $2. PMID 24875276. 
  2. ^ Hapala, Prokop; Kichin, Georgy; Wagner, Christian; Tautz, F. Stefan; Temirov, Ruslan; Jelínek, Pavel (19 Ağustos 2014). "Mechanism of high-resolution STM/AFM imaging with functionalized tips". Physical Review B. 90 (8). s. 085421. arXiv:1406.3562 $2. Bibcode:2014PhRvB..90h5421H. doi:10.1103/PhysRevB.90.085421. 
  3. ^ De Luca, S.; Chen, F.; Seal, P.; Stenzel, M. H.; Smith, S. C. (2017). "Binding and Release between Polymeric Carrier and Protein Drug: pH-Mediated Interplay of Coulomb Forces, Hydrogen Bonding, van der Waals Interactions, and Entropy". Biomacromolecules. 18 (11). ss. 3665-3677. doi:10.1021/acs.biomac.7b00657. PMID 28880549. 
  4. ^ Hämäläinen, Sampsa K.; van der Heijden, Nadine; van der Lit, Joost; den Hartog, Stephan; Liljeroth, Peter; Swart, Ingmar (31 Ekim 2014). "Intermolecular Contrast in Atomic Force Microscopy Images without Intermolecular Bonds". Physical Review Letters. 113 (18). s. 186102. arXiv:1410.1933 $2. Bibcode:2014PhRvL.113r6102H. doi:10.1103/PhysRevLett.113.186102. hdl:1874/307996. PMID 25396382. 20 Ocak 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Ağustos 2017. 
  5. ^ a b c Arunan, Elangannan; Desiraju, Gautam R.; Klein, Roger A.; Sadlej, Joanna; Scheiner, Steve; Alkorta, Ibon; Clary, David C.; Crabtree, Robert H.; Dannenberg, Joseph J. (8 Temmuz 2011). "Definition of the hydrogen bond (IUPAC Recommendations 2011)". Pure and Applied Chemistry. 83 (8). ss. 1637-1641. doi:10.1351/PAC-REC-10-01-02. ISSN 1365-3075. 
  6. ^ Pimentel, G. The Hydrogen Bond Franklin Classics, 2018), 0343171600
  7. ^ Jeffrey, G. A.; An introduction to hydrogen bonding; Oxford university press New York, 1997. 0195095499
  8. ^ Jeffrey, G. A.; Saenger, W. Hydrogen bonding in biological structures; Springer: Berlin, 1994, 2012 Springer; 3540579036
  9. ^ Steiner, Thomas (2002). "The Hydrogen Bond in the Solid State". Angew. Chem. Int. Ed. 41 (1). ss. 48-76. doi:10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U. PMID 12491444. 
  10. ^ Sabin, John R. (1971). "Hydrogen bonds involving sulfur. I. Hydrogen sulfide dimer". J. Am. Chem. Soc. 93 (15). ss. 3613-3620. doi:10.1021/ja00744a012. 
  11. ^ Beijer, Felix H.; Kooijman, Huub; Spek, Anthony L.; Sijbesma, Rint P.; Meijer, E. W. (1998). "Self-Complementarity Achieved through Quadruple Hydrogen Bonding". Angew. Chem. Int. Ed. 37 (1–2). ss. 75-78. doi:10.1002/(SICI)1521-3773(19980202)37:1/2<75::AID-ANIE75>3.0.CO;2-R. 
  12. ^ Desiraju, G. R. and Steiner, T. The Weak Hydrogen Bond: In Structural Chemistry and Biology, International Union of Crystallography;2001, 0198509707
  13. ^ Nishio, M.; Hirota, M.; Umezawa, Y. The CH–π Interactions; Wiley-VCH, New York, 1998. • Wiley-VCH; 1998) 0471252905
  14. ^ Nishio, M (2011). "The CH/[small pi] hydrogen bond in chemistry. "Title". Phys. Chem. Chem. Phys. 13 (31). ss. 13873-13900. doi:10.1039/c1cp20404a. PMID 21611676. 
  15. ^ Arunan, Elangannan; Desiraju, Gautam R.; Klein, Roger A.; Sadlej, Joanna; Scheiner, Steve; Alkorta, Ibon; Clary, David C.; Crabtree, Robert H.; Dannenberg, Joseph J.; Hobza, Pavel; Kjaergaard, Henrik G.; Legon, Anthony C.; Mennucci, Benedetta; Nesbitt, David J. (2011). "Definition of the hydrogen bond". Pure Appl. Chem. 83 (8). ss. 1637-1641. doi:10.1351/PAC-REC-10-01-02. 
  16. ^ Larson, J. W.; McMahon, T. B. (1984). "Gas-phase bihalide and pseudobihalide ions. An ion cyclotron resonance determination of hydrogen bond energies in XHY- species (X, Y = F, Cl, Br, CN)". Inorganic Chemistry. 23 (14). ss. 2029-2033. doi:10.1021/ic00182a010. 
  17. ^ a b Emsley, J. (1980). "Very Strong Hydrogen Bonds". Chemical Society Reviews. 9 (1). ss. 91-124. doi:10.1039/cs9800900091. 
  18. ^ V. David, N. Grinberg, S. C. Moldoveanu in Advances in Chromatography Volume 54 (Eds.: E. Grushka, N. Grinberg), CRC Press, Boca Raton, 2018, chapter 3.
  19. ^ Referansta ayrıntılı olarak açıklandığı gibi moleküler dinamik kullanılarak elde edilen veriler, aynı hesaplama kullanılarak elde edilen toplu su için 7,9 kJ/mol ile karşılaştırılmalıdır.Markovitch, Omer; Agmon, Noam (2007). "Structure and energetics of the hydronium hydration shells" (PDF). The Journal of Physical Chemistry A. 111 (12). ss. 2253-2256. Bibcode:2007JPCA..111.2253M. CiteSeerX 10.1.1.76.9448 $2. doi:10.1021/jp068960g. PMID 17388314. 13 Ağustos 2014 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 25 Ekim 2017. 
  20. ^ Biedermann F, Schneider HJ (Mayıs 2016). "Experimental Binding Energies in Supramolecular Complexes". Chemical Reviews. 116 (9). ss. 5216-300. doi:10.1021/acs.chemrev.5b00583. PMID 27136957. 
  21. ^ Gu, Yanliang; Kar, Tapas; Scheiner, Steve (1999). "Fundamental Properties of the CH···O Interaction: Is It a True Hydrogen Bond?". Journal of the American Chemical Society. 121 (40). ss. 9411-9422. doi:10.1021/ja991795g. 


İlgili Araştırma Makaleleri

Kimya, maddenin yapısını, özelliklerini, birleşimlerini, etkileşimlerini, tepkimelerini araştıran ve uygulayan bilim dalıdır. Kimya bilmi daha kapsamlı bir ifadeyle maddelerin özellikleriyle, sınıflandırılmasıyla, atomlarla, atom teorisiyle, kimyasal bileşiklerle, kimyasal tepkimelerle, maddenin hâlleriyle, moleküller arası ve moleküler kuvvetlerle, kimyasal bağlarla, tepkime kinetiğiyle, kimyasal dengenin prensipleriyle vb konularla ilgilenir. Kimyanın en önemli dalları arasında analitik kimya, anorganik kimya, organik kimya, fizikokimya ve biyokimya sayılır.

<span class="mw-page-title-main">Amino asit</span> Proteinlerin temel yapı taşı

Amino asitler, proteinleri oluşturan temel yapı taşlarıdır.

<span class="mw-page-title-main">Molekül</span> birbirine bağlı gruplar halindeki atomların oluşturduğu kimyasal bileşiklerin en küçük temel yapısı

Molekül, birbirine bağlı gruplar halindeki atomların oluşturduğu kimyasal bileşiklerin en küçük temel yapısına verilen addır. Diğer bir ifadeyle bir molekül bir bileşiği oluşturan atomların eşit oranlarda bulunduğu en küçük birimdir. Moleküller yapılarında birden fazla atom içerirler. Bir molekül aynı iki atomun bağlanması sonucu ya da farklı sayılarda farklı atomların bağlanması sonucunda oluşabilirler. Bir su molekülü 3 atomdan oluşur; iki hidrojen ve bir oksijen. Bir hidrojen peroksit molekülü iki hidrojen ve 2 oksijen atomundan oluşur. Diğer taraftan bir kan proteini olan gamma globulin 1996 sayıda atomdan oluşmakla birlikte sadece 4 çeşit farklı atom içerir; hidrojen, karbon, oksijen ve nitrojen. Molekülleri oluşturan kimyasal bağlara Moleküler bağlar denir. Bunlar kovalent, iyonik ve metalik bağlardır.

<span class="mw-page-title-main">Kovalent bağ</span> İki atom arasında elektronun paylaşılması

Kovalent bağ, atomlar arasında elektron çiftleri oluşturmak için elektronların paylaşımını içeren kimyasal bağdır. Bu elektron çiftlerine paylaşılan çiftler veya bağ çiftleri denir. Atomlar arasında elektronları paylaştıklarında çekici ve itici kuvvetlerin kararlı dengesine kovalent bağ denir. Birçok molekül için elektronların paylaşılması her atomun kararlı elektronik gruplaşmasına denk gelen tam değerlik kabuğunun eşdeğerine ulaşmasına olanak tanır.

<span class="mw-page-title-main">Kimyasal bağ</span> atomları birbirine bağlanmasını ve bir arada kalmasını sağlayan kuvvet

Kimyasal bağ, atomların veya iyonların molekülleri, kristalleri ve diğer yapıları oluşturmak üzere birleşmesidir. Bağ, iyonik bağlar'da olduğu gibi zıt yüklü iyonlar arasındaki elektrostatik kuvvetten veya kovalent bağ'larda olduğu gibi elektronların paylaşılmasından veya bu etkilerin bazı kombinasyonlarından kaynaklanabilir. Açıklanan kimyasal bağların farklı mukavemetleri vardır: kovalent, iyonik ve metalik bağlar gibi "güçlü bağlar" veya "birincil bağlar" ve dipol-dipol etkileşimleri, London dağılım kuvveti ve hidrojen bağı gibi "zayıf bağlar" veya "ikincil bağlar" vardır.

<span class="mw-page-title-main">Bileşik</span> Kimyasal olarak bağlanmış birden fazla elementten oluşan madde

Kimyasal bileşik, kimyasal bağlarla bir arada tutulan birden fazla kimyasal elementin atomlarını içeren birçok özdeş molekülden oluşan kimyasal maddedir. Dolayısıyla tek bir elementin atomlarından oluşan bir molekül bileşik değildir. Bir bileşik, diğer maddelerle etkileşimi içerebilen kimyasal reaksiyonla farklı bir maddeye dönüştürülebilir. Bu süreçte atomlar arasındaki bağlar kırılabilir ve/veya yeni bağlar oluşabilir.

<span class="mw-page-title-main">İstiflenme</span>

Kimyada istiflenme, genelde aromatik olan moleküllerin atomlar arası etkileşerek deste şeklinde üst üst üste gelmesidir. İstiflenmiş bir sistemin en yaygın bilinen örneği DNA molekülünde birbirini takibeden bazlarda görülür. İstiflenme proteinlerde, non-polar iki halkanın örtüşmesi halinde de meydana gelir. Hangi moleküllerarası kuvvetlerin istiflenmeye neden olduğu hâlen tartışma konusudur.

<span class="mw-page-title-main">Moleküler tanıma</span>

Moleküler tanıma, iki veya daha çok molekül arasında kovalent olmayan bağlanma yoluyla spesifik etkileşime değinmek için kullanılan bir terimdir. Moleküler tanımada konak ve konuk moleküler tamamlayıcılık gösterirler.

Floroantimonik asit (HSbF6) hidrojen florür ve antimon pentaflorürün farklı oranlardaki karışımıdır. Bu karışımlardan 1:1 kombinasyonu, bilinen en güçlü süperasit formunu oluşturur. Öyle ki, bu form, hidrokarbonları iyonize ederek karbokatyonlar ve H2 oluşturabilmektedir.

<span class="mw-page-title-main">Van der Waals kuvveti</span>

Moleküler fizik ve kimyada Van der Waals kuvveti veya Van der Waals etkileşimi, atomlar veya moleküller arasındaki mesafeye bağlı bir etkileşimdir. İyonik veya kovalent bağların aksine, bu çekimler kimyasal elektronik bir bağdan kaynaklanmaz; nispeten zayıftırlar ve bu nedenle bozulmaya daha duyarlıdırlar. Van der Waals kuvveti, etkileşen moleküller arasındaki uzak mesafelerde hızla yok olur.

Moleküller arası kuvvet, komşu parçacıklar arasında etkili çekim veya itme kuvvetidir. Molekülleri bir arada tutan iç kuvvetlere kıyasla daha zayıftır. Örneğin HCI moleküllerinin içinde bulunan kovalent bağ, birbirine yeterince yakın komşu moleküller arasında mevcut olan kuvvetlerden daha güçlüdür.

<span class="mw-page-title-main">Boran</span> kimyasal bileşik

Trihidridoboron, boran veya borin, BH3 kimyasal formülü ile gösterilen dengesiz ve oldukça reaktif bir moleküldür. Boran karbonilin BH3(CO) hazırlanması, boran kimyasının araştırılmasında büyük rol oynamıştır. Ancak, BH3 molekül türleri çok güçlü Lewis asidilerdir. Sonuç olarak, oldukça reaktifdir ve doğrudan bir akış sisteminde, sürekli olarak üretilen, geçici bir ürün olarak veya lazerle çıkarılmış atomik borun hidrojen ile reaksiyonundan doğrudan gözlenebilir.

<span class="mw-page-title-main">Dörtyüzlü moleküler geometri</span>

Dörtyüzlü veya tetrahedral molekül geometrisi, merkezi atomun, dört yüzlünün ortasında, dört köşede ise sübstitüentlerin yer aldığı molekül geometrisidir. Bağ açıları, dört sübstitüent aynı olduğunda (örn. metan CH4 ya da daha ağır analogları) cos−1 (-⅓) = 109,4712206 ...° ≈ 109.5° olur. Metan veya diğer simetrik yüzlü moleküller Td nokta grubuna aittir, ama dörtyüzlü moleküller genellikle düşük simetriye sahiptir. Tetrahedral moleküller kiral olabilir.

<span class="mw-page-title-main">2-Piridon</span>

2-Piridon, C5H4NH(O) formülüne sahip organik bir bileşiktir. Renksiz bir katıdır. Hidrojen bağlı dimerler oluşturduğu iyi bilinmektedir ve tautomerler olarak var olan bir bileşiktir.

<span class="mw-page-title-main">Gauche etkisi</span>

Konformasyonel izomerizm çalışmalarında Gauche etkisi, bir gauche konformasyonunun anti konformasyondan (180°) daha kararlı olduğu atipik bir durumdur.

<span class="mw-page-title-main">Bromik asit</span>

Hidrojen bromat olarak da bilinen bromik asit, HBrO3 moleküler formülüne sahip bir oksoasittir. Sadece sulu çözelti içinde bulunur. Broma ayrışırken oda sıcaklığında sarıya dönen renksiz bir çözeltidir. Bromik asit ve bromatlar güçlü oksitleyici ajanlardır ve Belousov-Zhabotinsky reaksiyonlarında yaygın bileşenlerdir. Belousov-Zhabotinsky reaksiyonları denge olmayan termodinamiğin klasik bir örneğidir.

<span class="mw-page-title-main">Trioksidan</span>

Trioksidan, hidrojen trioksit veya dihidrojen trioksit olarak da adlandırılan, H[O]3H (H2O3 olarak da yazılır) kimyasal formülüne sahip bir inorganik bileşiktir. Kararsız hidrojen polioksitlerdendir. Sulu çözeltilerde, trioksidan su ve tekli oksijen oluşturmak için ayrışır:

<span class="mw-page-title-main">Enzim katalizi</span>

Enzim katalizi, biyolojik bir molekül olan "enzim" tarafından sağlanan, bir sürecin hızındaki artıştır. Enzimlerin çoğu proteindir ve bu tür işlemlerin çoğu kimyasal reaksiyonlardır. Enzim içinde, genellikle kataliz aktif bölge olarak adlandırılan lokalize bir bölgede gerçekleşir.

<span class="mw-page-title-main">İkili bağ</span> dört bağ elektronu içeren kimyasal bağ; bir sigma artı bir pi bağı vardır

Kimyada ikili bağ veya çift bağ, iki atom arasında, tekli bağdaki iki elektrona karşılık dört bağ elektronu içeren kovalent bir bağdır. İkili bağlar en yaygın olarak iki karbon atomu arasında, örneğin alkenlerde meydana gelir. Birçok ikili bağ iki farklı element arasında bulunur: örneğin, bir karbon atomu ile bir oksijen atomu arasındaki bir karbonil grubunda. Diğer yaygın ikili bağlar azo bileşiklerinde (N=N), iminlerde (C=N) ve sülfoksitlerde (S=O) bulunur. Bir iskelet formülünde, bir ikili bağ, bağlı iki atom arasında iki paralel çizgi (=) olarak çizilir; tipografik olarak bunun için eşittir işareti kullanılır. İkili bağlar kimyasal gösterimde Rus kimyager Alexander Butlerov tarafından tanıtılmıştır.

Karbon-karbon bağı, iki karbon atomu arasındaki kovalent bir bağdır. En yaygın şekli tekli bağdır: iki atomun her birinden birer tane olmak üzere iki elektrondan oluşan bir bağ. Karbon-karbon tekli bağı bir sigma bağıdır ve karbon atomlarının her birinden bir hibridize orbital arasında oluşur. Etanda orbitaller sp3-hibridize orbitallerdir, ancak diğer hibridizasyonlara sahip karbon atomları arasında oluşan tek bağlar meydana gelir. Aslında, tekli bağdaki karbon atomlarının aynı hibridizasyona sahip olması gerekmez. Karbon atomları ayrıca alken adı verilen bileşiklerde çift bağ veya alkin adı verilen bileşiklerde üçlü bağ oluşturabilir. Bir çift bağ, sp2-hibritleşmiş bir orbital ve hibritleşmeye dahil olmayan bir p-orbitali ile oluşturulur. Üçlü bağ, sp-hibritleşmiş bir orbital ve her atomdan iki p-orbitali ile oluşturulur. P-orbitallerinin kullanımı bir pi bağı oluşturur.