İçeriğe atla

Hidrohalojenleme

İlk üç alkende hidrohalojenasyonu gösteren mekanizmalar
Etende hidrojen halojen katılmasını gösteren mekanizma
Etende hidrohalojenasyon
Etende hidrohalojenasyon
Burada ilk etapta hidrojenin alkenin yapısına katılmasıyla birincil karbokatyon iyonu oluşmaktadır.
Etende hidrohalojenasyon mekanizması
Etende hidrohalojenasyon mekanizması
Oluşan birincil karbokatyona brom iki elektron vererek bağlanır ve 1-Bromoetan oluşur.
Propene hidrojen halojen katılmasını gösteren mekanizma
Propanda hidrohalojenasyon mekanizması
Propanda hidrohalojenasyon mekanizması
Burada yukarıda olduğu gibi hidrojen alkenin çift bağına katılır. Yalnız bu sefer ikincil karbonkatyon iyonu oluşur.
Propanda hidrohalojenasyon mekanizması
Propanda hidrohalojenasyon mekanizması
Burada oluşan ikincil karbokatyon iyonuna brom iki elektron vererek bağlanır ve 2-Bromopropan oluşur.
iso-Bütene hidrojen halojen katılmasını gösteren mekanizma
Bütende hidrohalojenasyon mekanizması
Bütende hidrohalojenasyon mekanizması
Burada da yine alkenin çift bağına bir hidrojen katılır ve bu sefer burada üçüncül karbonkatyon oluşur.
Bütende hidrohalojenasyon mekanizması
Bütende hidrohalojenasyon mekanizması
Oluşan üçüncül karbokatyona brom burada da iki elektron vererek bağlanır ve tert-bütil bromür oluşur.

HCl veya HBr gibi halohidrik asitlerin alkenlere katılımıyla haloalkanlar meydana gelir. Alkenlerde hidrojen ve Halojenlerin katılmalarında iki farklı durum ortaya çıkar. Eğer katılmaya giren alken eten gibi sadece birincil karbonlardan oluşan bir alken ise tepkime yandaki gibi sonuçlanır.

Burada genel itibarıyla mekanizma şöyle cereyan etmektedir. HBr molekülü elektron bakımından yengin olan çift bağlara yaklaşır ve bu yaklaşma sonucunda eletronlar HBr molekülü arasında bulunan elektronları Br atomuna iteklemektedirler. Bunun sonucunda artı yüklü olan hidrjen alkenle bir bağ yaparak ara bir ürün olan karbokatyon iyonunu oluşturmaktadır. Bu işlem yavaş gerçekleşmektedir. İkinci aşama ise oluşan Br iyonu karbokatyona bağlanarak halojen alkane oluşturur. Bu işlemse genel itibarıyla ilk basamaktan daha hızlıdır.

Yandaki tabloda ilk üç Alkene hidrojen halojenlerin bağlanmasını gösteren örnekler verilmiştir. Yandaki tabloya baktığımızda etene hidrojen halojenür katılması sırasında birincil bir karbokatyon iyonu oluşmaktadır ve bu karbokatyonun oluşumun gerçekleştiği ve 1. olarak işaretlenen adım genel tepkimenin yavaş olan kısmıdır. 2. basamak olarak gösterilen adım 1. basamağa göre hızlı olmasına rağmen tepkimenin genel hızını belirten kısım 1. kısımdır. Burada hidrojenin alkene bağlaması ve bir halojen iyonunun oluşmasıdır.

İlk örnekte dikkat edilecek diğer bir konuda burada hidrojenin bağlanacağı karbon atomunun fark etmemesidir. Propen ve iso-Büten örneklerine baktığımızda burada hidrojen atomunun bağlanacağı atomun değişmesi sonucunda farklı karbokatyon iyonlarının oluşması söz konusudur. Mesela Propenin birinci karbonuna bağlanması sonucu ikincil karbokatyon iyonu ve izo-Bütenin birinci karbonuna bağlanması sonucunda üçüncül bir karbokatyon iyonu oluşmaktadır. İste bu örneklerde hidrojenin çift bağı yapmış diğer karbona yani ikinci karbona bağlanmaması Markownikow-Kuralıyla açıklanabilmektedir. Bu kurala göre katılma tepkimelerinde hidrojen diğer bir deyişle artı yüklü atom çift bağ yapmış karbonlardan en fazla hidrojene sahip olan karbona bağlanır. Yani kimin varsa o alır prensibine uygun olarak hidrojenler bağlanır. Bunun yanı sıra burada oluşan karbokatyonların oluşma öncelikleri vardır. Üçüncül karbokatyon iyonu ikincile göre, ikincilde birincile göre öncelikli oluşmaktadır.

Kaynakça

T.W Graham Solamons(Yazar), Craig B. Fryhle (Yazar),Güral Okay (Çeviri Editörü), Yılmaz Yıldırır (Çeviri Editörü) Organik Kimya, (Organik Chemsty), 7. Basımdan Çeviri, Literatür Yayıncılık 2002, ISBN 975-8431-87-0. Sayfa 324-327

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Hidrokarbon</span> tamamen hidrojen ve karbondan oluşan organik bileşik

Hidrokarbon, sadece karbon ve hidrojen atomlarından oluşan kimyasal bileşiklerin genel adı.

<span class="mw-page-title-main">Alkol</span> karbon atomuna doğrudan bir -OH grubunun bağlı olduğu organik bileşiklere verilen genel ad

Alkol, karbon atomuna doğrudan bir -OH (hidroksil) grubunun bağlı olduğu organik bileşiklere verilen genel ad. Genel formülü CnH2n+1OH olan mono alkoller, alkollerin önemli bir sınıfıdır. Bunlardan etanol (C2H5OH), alkollü içeceklerde bulunan türüdür. Genellikle alkol kelimesi ile etanol kastedilir ki yeni fermente olmuş birada etanol oranı %3-5 arasında iken şarapta %12-15 arasındadır.

<span class="mw-page-title-main">Alken</span>

Alkenler yapılarında en az bir tane karbon-karbon (C=C) çift bağı içeren organik bileşiklerdir. Alkenlerin yapısında karbon-karbon çift bağı bulunduğundan ve bu karbonların yapabileceği en fazla hidrojenle bağ yapmamış olduğundan alkenler doymamış bileşikler kategorisine girerler. Alkenlerin yapısında sadece bir karbon-karbon çift bağının bulunması durumunda homolog seriler oluşturur. Bu homolog serilerin genel formülü CnH2n şeklindedir. Burada n-in en az 2 olma şartı vardır. Aşağıda en basit alken olan eten, yaygın ismiyle etilenin, çeşitli modellemelerle çizilmiş şekillerinin yanı sıra alkenlerin çeşitli şekillerdeki yazılış şekilleri de bulunmaktadır.

Hidrojenasyon, bir kimyasal reaksiyon sınıfıdır ve organik bileşiklere hidrojen (H2) eklenmesi işlemidir. Hidrojenasyon, özellikle doymamış organik bileşikler (alkenler, alkinler, ketonlar ve nitriller ) için önemli bir reaksiyondur. Genellikle basınç altında katalizörler yardımı ile direkt hidrojen eklemesi ile gerçekleştirilir. Hidrojenasyon için en klasik örnek, alkenlerdeki doymamış karbon kimyasal bağına bir hidrojenin ekleyerek, alkeni alkana dönüştürmektir. İlaç ve petrokimya endüstrisinde çok değişik uygulamaları vardır. Bu kimyasal işlemin tersi dehidrojenasyondur. Alkenlere hidrojenin katılması sonucunda Alkanlar oluşur. Alkankar sadece karbon-karbon tekli bağlara sahiptirler. Bu tepkimede katalizör kullanıldığından katalitik hidrojenleme olarak da adlandırılır. Alkenlere hidrojen katılma tepkimeleri ekzotermik tepkimeler olup oda sıcaklığında katalizörsüz tepkime gerçekleşmez. Burada katalizör kullanılarak tepkimenin oda sıcaklığında gerçekleşmesi sağlanır. Yalnız katalizörün etkisi bununla sınırlı kalmıyor. Kullanılan katalizör elde edilecek olan ürünün cis-Alkan ya da trans-Alkan olmasını etkilemektedir. Eğer kullanılan katalizör heterojen bir katalizör ise, (bir parça nikel, platin, paladyum) yani çözelti içerisinde heterojen olarak karışıyorsa katılan her iki hidrojen atomu alkenin aynı tarafına eklenir ve böylece cis-Alkan oluşur. Şayet bu katalizör çözelti içerisinde homojen olarak yayılan bir katalkizörse bu seferde trans-Alkan oluşmuş olacak.

<span class="mw-page-title-main">Kimyasal bağ</span> atomları birbirine bağlanmasını ve bir arada kalmasını sağlayan kuvvet

Kimyasal bağ, atomların veya iyonların molekülleri, kristalleri ve diğer yapıları oluşturmak üzere birleşmesidir. Bağ, iyonik bağlar'da olduğu gibi zıt yüklü iyonlar arasındaki elektrostatik kuvvetten veya kovalent bağ'larda olduğu gibi elektronların paylaşılmasından veya bu etkilerin bazı kombinasyonlarından kaynaklanabilir. Açıklanan kimyasal bağların farklı mukavemetleri vardır: kovalent, iyonik ve metalik bağlar gibi "güçlü bağlar" veya "birincil bağlar" ve dipol-dipol etkileşimleri, London dağılım kuvveti ve hidrojen bağı gibi "zayıf bağlar" veya "ikincil bağlar" vardır.

Esterleşme, esterler genel olarak karbon asitlerinden elde edilmektedirler. Burada karbon asitlerinde bulunan –OH grubu (alkol) bir –OR grubuyla yer değiştirmesi sonucunda oluşmaktadır. Esterleşme tepkimelerin gerçekleşmesi için ısının yanı sıra katalizör olarak da genellikle Sülfürik asit ve hidroklorik asit kullanılmaktadır. Aşağıdaki tabloda asit katalizörle tepkimesini gösteren bir şema görebiliriz.

<span class="mw-page-title-main">Amin (kimya)</span>

Aminler, amonyaktaki bir veya daha fazla hidrojen atomunun organik radikaller ile değiştirilmesi yöntemiyle türetilmiş organik bileşikler ve fonksiyonel gruplardır. Yapısal olarak aminler amonyağa benzerler, ama bir veya daha fazla hidrojen atomu, alkil veya aril gibi organik sübstitüentlerle yer değiştirmiştir. Bu kuralın önemli bir istisnası RC(O)NR2 tipi bileşiklerdir (C(O) karbonil grubuna karşılık gelir), bunlara amin yerine amid denir. Amidler ve aminlerin yapıları ve özellikleri farklı olduğu için bu ayrım kimyasal olarak önemlidir. Adlandırma açısında biraz akıl karıştırıcı olan bir nokta, bir aminin N-H grubunun N-M (M= metal) ile değişmesi hâlinde buna da amid denmesidir. Örneğin (CH3)2NLi, lityum dimetilamid'dir.

Esterlerin su alarak alkol ve asitlere ayrışması reaksiyonudur. Sabunlaşma esterleşmenin tersi olan bir reaksiyondur.Sabunlaşma denilince esterlerin Hidrolizi akla gelmektedir. Bu tepkimenin gerçekleşmesi için hidroksitlerin sulu çözeltisi daha doğru Natriıum hidroksit ya da esterleri parçalaya bilen özel enzimler gerekmektedir. Bitkisel ya da hayvansal yağların sabunlaşması sonucu üç değerli bir alkol olan Gliserin ile yağ asidi oluşur. Sabunlaşma sodyum hidroksit ya da potasyum hidroksit ile yapılırsa yağ asidi yerine bunun sodyum tuzu ya da potasyum tuzu elde edilir. Sabunlaşma temelde bir çeşit Hidroliz reaksiyonudur.

Katılma tepkimeleri, bir organik molekülün yapısına dışarıdan başka bir molekülün katılmasıdır. Organik kimyada yapısında karbon-karbon çift bağı (Alken) ya da karbon-karbon üçlü bağı (Alkin) bulunduran molekülerlerin yapısına dışarıdan en az iki elementin girmesiyle gerçekleşen tepkimelerdir. İşte bu tepkimeler sonucu yapısında çoklu bağ bulunduran moleküldeki çoklu bağlar kırılarak yerlerine tekli bağlar oluşur.

<span class="mw-page-title-main">Markovnikov kuralı</span> organik kimyada asimetrik alkenlere hidrojen halojenürlerin karbon-karbon çift bağlarına katılmasını öngören kanun

Markovnikov kuralı, organik kimyada asimetrik alkenlere hidrojen halojenürlerin karbon-karbon çift bağlarına katılmasını öngörür. Bu kurala göre, asimetrik alkenlere hidrojen halojenürler katıldığında, hidrojen atomu her zaman en fazla hidrojen atomuna sahip olan karbon atomuna bağlanır. Bu da açıkta kalan halojen atomunun fazla dallanma yapan ya da hidrojen bakımından fakir olan karbon atomuna bağlanması anlamına gelir. Bu etki suyun alkenlere katılması esnasında da gözlenir. Burada su molekülündeki H- atomu en az dallanmış karbon atomuna bağlanırken, OH-grubu ise en fazla dallanma yapmış karbon atomuna bağlanır. Rus kimyager Vladimir Markovnikov tarafından 1870'te önerilmiştir.

Halojenleme veya halojenasyon, bir bileşiğe bir veya daha fazla halojenin katılmasını gerektiren kimyasal bir reaksiyondur. Alkenler, klor ve brom gibi halojenlerle, nükleofillik özelliği göstermeyen çözücüler içerisinde hızla tepkimeye girerler ve dihalojenleri oluştururlar. Bromun katılması daha kolay takip edilebilmektedir. Çünkü kırmızı-kahve rengi olan Brom çözeltisinin rengi ortadan kalkar. Bu yöntem özellikle çift bağların varlığını kanıtlamada kullanılır. Burada alken doymamış bir molekül olduğu için bromla tepkimeye girerken, alkanlar ise ortamda radikal bir çözelti olmadığı sürece tepkime vermez. Genel itibarıyla bu tepkimeler ya oda sıcaklığında ya da soğuk bir ortamda inert halojen çözücülerinin (CCl4) varlığında uygulanır.

<span class="mw-page-title-main">Hidrasyon</span>

Endüstride küçük moleküllü alkollerin elde edilmesi için kullanılan bir yöntemdir. Bu yöntem alkenlerin hidrasyonu olarak da adlandırılmaktadır. Su kötü bir nüklefil olduğu için genellikle alkenlerle su katma tepkimeleri istenilen ürünü yani alkolleri vermezler. Bu yüzden bu tepkimeler çoğunlukla bir asit katalizörün varlığında gerçekleştirilir. Sülfürik asit ve fosforik asit alkenlerin hidrasyonu esnasında en sık kullanılan asitlerdir. Hidrasyon tepkimeleri genel itibarıyla Markownikow-Kuralı çerçevesinde gerçekleşen bir tepkimedir.

Alkenler sülfürik asitin katılması soğuk bir ortamda bile tepkime verip Alkil hidrojen sülfat bileşiklerini vermektedir. Genel itibarıyla bu tepkime alkenlere hidrojen halojen katılma tepkimeleriyle benzerlik göstermektedir.

Nükleofil ismi, atomun artı kısmı manasına gelen nucleo ve Yunancada seven manasına gelen philos kelimelerinden oluşmaktadır. İsimden de anlaşılacağı gibi nükleofiller artı parçacıkları seven artı merkez arayışı içinde olan moleküllerdir. Bu tür tepkimelerde nükleofiller yani bir çift ortaklaşmamış elektrona sahip molekül, bir alkil halojenürün halojen kısmıyla yer değiştrir işte bu şekilde gerçekleşen yer değişikliklerine Nükleofil yer değiştirme tepkimeleri denir. Elektronegatif halojen elektronları kendine doğru çektiğinden dolayı Karbon otomu üzerinde kısmi bir pozitif yük oluşmuş oluyor. Bu tepkimede de görüldüğü gibi bir yer değiştirme işlemi vardır.

Alkin halojenürlerin katıldıkları bir başka tepkime çeşidiyse ayrılma tepkimeleridir. Bu tepkime esnasında molekülün yapısında bulunan XY gibi bir molekül alkil halojenürlerin yapısından ayrılır bunun sonucunda da çoklu bağlar oluşmaktadır.

Primer tarihte ilk olarak kimyada "ilk çıkan, temelini oluşturan" manasında kullanılmıştır. Örneğin primer ürünler ve primer tepkimeler gibi.

Sekunder, Latincedeki 'Secundarius' kelimesinden gelmektedir. Kimyada ise ikinci sıradaki anlamında kullanılmaktadır.

Tersiyer Latincedeki "tertiarius" kelimesinden gelmektedir. Kimyada üçüncül manasında kullanılmaktadır.

Alkenler sülfürik asitin katılması soğuk bir ortamda bile tepkime verip Alkil hidrojen sülfat bileşiklerini vermektedir. Genel itibarıyla bu tepkime alkenlere hidrojen halojen katılma tepkimeleriyle benzerlik göstermektedir.

<span class="mw-page-title-main">Hidrojen iyodür</span> kimyasal birleşik

Hidrojen iyodür (HI) iki atomlu bir molekül ve hidrojen halojenürdür. Sulu çözeltisi, güçlü bir asit olan hidroiyodik asit veya hidriyodik asit olarak bilinir. Bununla birlikte, hidrojen iyodür ve hidroiodik asit, birincisinin standart koşullar altında bir gaz olması, diğerinin ise söz konusu gazın sulu bir çözeltisi olması bakımından farklıdır. Birbirine dönüştürülebilir. HI, organik ve inorganik sentezlerde birincil iyot kaynaklarından biri ve bir indirgeyici madde olarak kullanılır.