İçeriğe atla

Hibrit sistem

Bir hibrit sistem, hem sürekli hem de ayrık dinamik davranış sergileyen dinamik bir sistemdir. Başka bir değişle hem akabilen (bir diferansiyel denklemle tanımlanır) hem de zıplayabilen (bir durum makinesi veya otomat tarafından tanımlanır) bir sistemtir. Genellikle, "hibrit dinamik sistem" terimi, sinir ağlarını ve bulanık mantığı veya elektrikli ve mekanik aktarma organlarını birleştirenler gibi hibrit sistemleri ayırt etmek için kullanılmaktadır. Bir hibrit sistem, yapısı içinde daha geniş bir sistem sınıfını kapsama avantajına sahiptir. Ayrıca dinamik olduların modellenmesinde daha fazla esneklik sağlamaktadır.

Genel olarak, bir hibrit sistemin durumu, sürekli değişkenlerin değerleri ve ayrık bir mod ile tanımlanmaktadır. Durum, bir akış koşuluna göre sürekli olarak veya bir kontrol grafiğine göre ayrık olarak değişmektedir. Sözde değişmezler tutulduğu sürece sürekli akışa izin verilirken, verilen atlama koşulları karşılanır karşılanmaz ayrık geçişler meydana gelmektedir. Ayrık geçişler olaylarla ilişkilendirilebilmektedir.

Örnekler

Hibrit sistemler, darbeli fiziksel sistemler, mantıksal-dinamik kontrolörler ve hatta internet tıkanıklığı dahil olmak üzere çeşitli siber-fiziksel sistemleri modellemek için kullanılmaktadır

Zıplayan top

Melez sistemin kanonik bir örneği, çarpma etkisi olan fiziksel bir sistem olan zıplayan toptur. Burada, top (bir nokta kütlesi olarak düşünülmektedir) ilk yükseklikten düşürülmektedir. Ardından yerden sıçramaktadır. Her sıçramada enerjisini yaymaktadır. Top, her sekme arasında sürekli dinamikler sergilemektedir. Bununla birlikte, top yere çarptığında, hızı esnek olmayan bir çarpışmadan sonra modellenen ayrı bir değişime uğramaktadır. Zıplayan topun matematiksel bir açıklaması aşağıdaki şekildedir. Topun yüksekliği , topun hızı olarak belirlensin, topu tanımlayan bir hibrit sistem aşağıdaki gibidir:

olduğunda, akış tarafından yönetilir. , burada g yerçekimi ivmesidir. Bu denklemler, topun yerden yüksekteyken yerçekimi ile yere çekildiğini belirtmektedir.

olduğunda, atlamalar tarafından yönetilir , burada aralığında bir dağılma faktörüdür. Bu, topun yüksekliği sıfır olduğunda (yere çarptığında), hızının tersine döndüğü ve bir kat azaldığı anlamına gelmektedir. Etkili bir şekilde, bu esnek olmayan çarpışmanın doğasını açıklamaktadır.

Zıplayan top, Zeno davranışı sergilediği için özellikle ilginç bir melez sistemdir. Zeno davranışının katı bir matematiksel tanımı vardır. Ancak gayri resmi olarak sonlu bir zaman diliminde sonsuz sayıda sıçrama yapan sistem olarak tanımlanabilmektedir. Bu örnekte, top her zıpladığında enerji kaybetmekte ve sonraki sıçramaları (yerle olan darbeleri) zamanla birbirine daha da yakınlaştırmaktadır.

Dinamik modelin ancak ve ancak zemin ve top arasındaki temas kuvveti eklendiğinde tamamlanmış olması dikkate değerdir. Gerçekten de kuvvetler olmadan zıplayan top tam olarak tanımlanamaz ve model mekanik bir bakış açısından anlamsızdır. Top ve yer arasındaki etkileşimleri temsil eden en basit temas modeli, kuvvet ile top ile yer arasındaki mesafe (boşluk) arasındaki tamamlayıcılık ilişkisidir. Bu şekilde de yazılmaktadır Böyle bir temas modeli, manyetik kuvvetleri veya yapıştırma etkilerini içermemektedir. Tamamlayıcılık ilişkileri içindeyken, etkiler birikip ortadan kalktıktan sonra sistemi bütünleştirmeye devam edebilmektedir. Sistemin dengesi, topun yerçekimi etkisi altında yerdeki statik dengesi olarak temas kuvveti ile daha iyi tanımlanmaktadır. Temel dışbükey analizden de fark edilir ki, tamamlayıcılık ilişkisi, normal bir koniye dahil etme olarak eşdeğer olarak yeniden yazılmaktadır. Böylece zıplayan top dinamiği, normal bir koniden bir dışbükey kümeye diferansiyel bir dahil etmedir

Hibrit Sistem Doğrulaması

Hibrit sistemlerin özelliklerini otomatik olarak kanıtlamaya yönelik yaklaşımlar vardır. Hibrit sistemlerin güvenliğini kanıtlamak için yaygın teknikler, erişilebilir kümelerin hesaplanması, soyutlama iyileştirme ve bariyer sertifikalarıdır.

Çoğu doğrulama görevi karar verilemez,[1] bu da genel doğrulama algoritmalarını imkansız hale getirmektedir. Bunun yerine araçlar, kıyaslama problemlerindeki yetenekleri açısından analiz edilmektedir. Bunun olası bir teorik karakterizasyonu, tüm sağlam durumlarda hibrit sistem doğrulaması ile başarılı olan algoritmalardır.[2] Bu, hibrit sistemler için birçok problemin karar verilemese de en azından yarı karar verilebilir olduğunu ima etmektedir.[3]

Diğer modelleme yaklaşımları

İki temel hibrit sistem modelleme yaklaşımı, örtük ve açık bir şekilde sınıflandırılmaktadır. Açık yaklaşım genellikle hibrit bir otomat, bir hibrit program veya bir hibrit Petri ağı ile temsil edilmektedir. Örtük yaklaşım genellikle, örneğin bir hibrit bağ grafiği aracılığıyla aktif denklemlerin değişebileceği diferansiyel cebirsel denklem sistemleri (DAE'ler) ile sonuçlanmak üzere korumalı denklemlerle temsil edilmektedir.

Hibrit sistem analizi için birleşik bir simülasyon yaklaşımı olarak, diferansiyel denklemler için entegratörlerin atomik DEVS modellerine nicelleştirildiği DEVS formalizmine dayalı bir yöntem vardır. Bu yöntemler, ayrık zamanlı sistemlerden farklı olarak ayrık olay sistemi tarzında sistem davranışlarının izlerini üretmektedir.

Araçlar

Ayrıca bakılabilir

Daha fazla makale

Ek bağlantı

Kaynakça

  1. ^ Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya: What's Decidable about Hybrid Automata, Journal of Computer and System Sciences, 1998
  2. ^ Martin Fränzle: Analysis of Hybrid Systems: An ounce of realism can save an infinity of states, Springer LNCS 1683
  3. ^ Stefan Ratschan: Safety verification of non-linear hybrid systems is quasi-decidable, Formal Methods in System Design, volume 44, pp. 71-90, 2014, DOI:10.1007/s10703-013-0196-2

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

Sinyaller ve sistemler kavram ve teorisi diğer birçok mühendislik ve bilim dallarıyla birlikte, elektrik ve elektronik mühendisliğinin hemen her alanında ve Biyomedikal mühendisliğinin tıbbi cihazlar ve biyoelektrik gibi elektrikle ilgilenen alt disiplinlerinde gerekli olup, haberleşme, EKG, EEG gibi tıbbi cihazlar, devreler ve sistemler ve kontrol sistemleri gibi alanlardaki ileri düzeyde çalışmaların matematiksel temelini oluşturur.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Diferansiyel geometri</span>

Diferansiyel geometri türevin tanımlı olduğu Riemann manifoldlarının özellikleriyle uğraşan matematiğin bir alt disiplinidir. Başka bir deyişle, bu manifoldlar üzerindeki metrik kavramlarla uğraşır. Eğrilik, eğriler için burulma ve yüzeyler için değişik eğrilikler, araştırılan özellikler arasındadır.

<span class="mw-page-title-main">Titreşim</span>

Titreşim bir denge noktası etrafındaki mekanik salınımdır. Bu salınımlar bir sarkaçın hareketi gibi periyodik olabileceği gibi çakıllı bir yolda tekerleğin hareketi gibi rastgele de olabilir.

Boyut analizi fiziksel büyüklüklerin farklı çeşitlerinin karışımını içeren fiziksel durumları içeren ve sıklıkla fizik, kimya ve mühendislikte kullanılan kavramsal bir yöntemdir.Fizikçiler ve mühendisler tarafından türevli denklemlerin ve hesaplamaların olasılıklarının kontrolünde kullanılır.Ayrıca deneylerle veya kavramın daha karmaşık teorileriyle denenebilen karmaşık fiziksel durumlarla ilgili mantıklı hipotezler oluşturmak için de kullanılır.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

<span class="mw-page-title-main">Green fonksiyonları</span>

Green fonksiyonları, matematikte homojen olmayan diferansiyel denklemlerin, istenen sınır koşulları altında çözülmesinde kullanılan bir yöntemi ve bu yöntemle ilişkili olarak hesaplanan fonksiyonu belirtmekte kullanılır. İlk kez matematikçi George Green tarafından kullanılmıştır.

Matematiksel model, bir sistemin matematiksel kavramlar ve dil kullanılarak tanımlanmasıdır. Matematiksel model geliştirme süreci, matematiksel modelleme olarak adlandırılır. Matematiksel modeller, doğa bilimlerinde ve mühendislik disiplinlerinde bunun yanı sıra sosyal bilimlerde kullanılır. Matematiksel modelleri daha çok fizikçiler, mühendisler, istatistikçiler, operasyon araştırma analistleri ve ekonomistler kullanır. Model, bir sistemi açıklamaya, farklı bileşenlerin etkilerini incelemeye ve bir davranış hakkında öngörüde bulunmak için yardımcı olabilir.

Doğrusal filtreler, işleme sokulan verilerin doğrusal değişkenler ile işlendiği sinyal işleme yapılarıdır. Bir başka deyişle, elde edilen sinyal çıktısı, girdinin doğrusal katsayılar ile işleme sokulması ile oluşturulur. Bu özellikte filtreler ile oluşturulan sistemler, dolayısıyla doğrusal sinyal tepkisi yaratırlar.

Ayrık diferansiyel geometri diferansiyel geometri içindeki kavramların ayrık karşılıklarının çalışmasıdır. Bunun yerine düzgün eğriler ve yüzeyler, burada çokgenler, örgüler ve yalın karmaşıklıklardır. Bu bilgisayar grafikleri ve topolojik kombinatoriklerin çalışması içinde kullanılabilir.

<span class="mw-page-title-main">Birim çember</span> trigonometri ve mampo da çok işlemi olmuş bir çemberdi ve çok kolay bir yönetimi vardır birim çemberi matematiğin temelini olustur bu yüzden çok önemli bir cemberdir

Birim çember Matematikte, yarıçapı bir birim olan çembere birim çember denir. Çoğunlukla, özellikle trigonometride, Öklid düzlemine göre Kartezyen koordinat sisteminde, merkezi orijin üzerinde (0,0) olan ve yarıçapı bir birim olan çemberdir. n birim çember sıklıkla S1; olarak ifade edilir. Genellikle daha büyük boyutları ise birim küredir. (x, y) birim çember üzerinde bir nokta olduğunda, |x| ve |y|, dik olan ve hipotenüsü bir olan üçgenin diğer kenar uzunluklarıdır. Bu nedenle, Pisagor teoremine göre, x ve y bu denklemi karşılamaktadır.

<span class="mw-page-title-main">Süperpozisyon prensibi (fizik)</span> Bir parçacık veya sistemin belli bir zamanda birden fazla durumda olabilmesi.

Fizikte ve sistem teorisinde, süperpozisyon prensibi, tüm lineer sistemler için bir veya daha fazla uyarılar tarafından oluşan net tepki olarak belirtilen süper pozisyon özelliği olarak da bilinir. Kuantum mekaniğinde iki dolanık parçanın durumuna da süperpoziyon denilir. Bu uyarılar her bir uyarıcı tarafından tek tek meydana gelen uyarıların toplamıdır. Eğer giriş A, X tepkisini üretirse ve giriş B, Y tepkisini üretirse, sonuç olarak giriş (A+B), (X+Y) tepkisini üretir. Homojenlik ve eklenebilirlik özellikleri birlikte süperpozisyon prensibi olarak adlandırılır. Bir lineer fonksiyon süperpozisyon prensibini sağlayanlardan biridir ve şöyle tanımlanır:

 Eklenebilirlik
  Homojenlik
skaler a için.
<span class="mw-page-title-main">Dinamik sistem</span>

Bu sayfa dinamik sistemlere dair genel bakış açılarını içerir ayrıntılı bilgi için dinamik sistem (tanım) veya çalışmak amaçlı dinamik sistemler teorisine bakabilirsiniz.

Floquet teorisi, periyodik katsayılı doğrusal diferansiyel denklem sistemlerinin çözümü ile ilgilenen bir matematik alt dalıdır. Floquet teorisi,

Dinamik sistemler teorisi, genellikle diferansiyel denklemler veya fark denklemleri kullanarak karmaşık dinamik sistemlerin davranışını açıklamak için kullanılan matematik alanıdır. Diferansiyel denklemler kullanıldığında sürekli dinamik sistemler denir. Fiziksel bakış açısından, sürekli dinamik sistemler, klasik mekaniğin bir genellemesidir. Hareket denklemlerinin doğrudan varsayıldığı ve en az eylem ilkesinin Euler-Lagrange denklemleriyle sınırlandırılmadığı bir genellemedir. Fark denklemleri kullanıldığında ayrık dinamik sistemler olarak adlandırılır. Zaman değişkeni, bazı aralıklarda ayrık ve bazılarında sürekli olan bir küme üzerinde çalıştığında veya Cantor kümesi gibi rastgele bir zaman kümesi olduğunda, zaman ölçeklerinde dinamik denklemler elde edilir.

<span class="mw-page-title-main">Hibrit akıllı sistem</span>

Hibrit akıllı sistem, yapay zeka alt alanlarından gelen yöntem ve tekniklerin bir kombinasyonunu kullanan bir yazılım sistemini ifade eder: