İçeriğe atla

Hesse matrisi

Matematikte, Hesse matrisi (İngilizceHessian matrix) bir skaler değerli fonksiyonun ya da skaler alanın ikinci-dereceden kısmi türevlerinden oluşan kare matristir. Çok değişkenli bir fonksiyonun yerel eğriliğini ifade eder.[1] Hesse matrisi, 19. yüzyılda Alman matematikçi Otto Hesse tarafından bulunmuştur ve ismini bu kişiden alır. Hesse'nin ilk kullandığı terim fonksiyonel determinantlardır.

Tanımı ve özellikleri

f : ℝn → ℝ girdi olarak bir vektör x ∈ ℝn alan ve çıktı olarak bir skaler f(x) ∈ ℝ veren bir fonksiyon olsun; eğer f'in tüm ikinci-dereceden kısmi türevleri alınabiliyorsa ve fonksiyonun tanım kümesinde sürekliyse, o zaman f'in Hesse matrisi H bir kare n×n matris olarak şu şekilde tanımlanır:

veya, i ve j indisleri kullanılarak daha öz bir şekilde ifade edilebilir:

Bu matrisin determinantı da bazen Hesse olarak adlandırılır.[2]

Bir Hesse matrisinin Jacobi matrisiyle ilişkili olduğu söylenebilir: H(f(x)) = J(∇f(x))T.

f'in karışık türevleri Hesse'nin ilkköşegeninde yer almayan terimleridir. Sürekli oldukları kabul edilirse, türevleme sırası önemli değildir (Schwarz kuramı). Yani Hessian ilkköşegene göre simetriktir. Örneğin,

Kaynakça

  1. ^ Ayvaz, Kevser (24 Mart 2016). "Hesse matrisi". Endüstri Mühendisliğim. 22 Mart 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Mart 2020. 
  2. ^ Binmore, Ken; Davies, Joan (2007). Calculus Concepts and Methods. Cambridge University Press. s. 190. ISBN 978-0-521-77541-0. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Vektör</span> büyüklüğü (veya uzunluğu) ve yönü olan geometrik nesne

Matematik, fizik ve mühendislikte, Öklid vektörü veya kısaca vektör sayısal büyüklüğü ve yönü olan geometrik bir objedir. Vektör, genellikle bir doğru parçası ile özdeşleştirilir. Bir başlangıç noktası A ile bir uç noktası B'yi birleştiren bir ok şeklinde görselleştirilir ve ile belirtilir.

<span class="mw-page-title-main">Matris (matematik)</span>

Matematikte matris veya dizey, dikdörtgen bir sayılar tablosu veya daha genel bir açıklamayla, toplanabilir veya çarpılabilir soyut miktarlar tablosudur. Dizeyler daha çok doğrusal denklemleri tanımlamak, doğrusal dönüşümlerde çarpanların takibi ve iki parametreye bağlı verilerin kaydedilmesi amacıyla kullanılırlar. Dizeylerin toplanabilir, çıkartılabilir, çarpılabilir, bölünebilir ve ayrıştırılabilir olmaları, doğrusal cebir ve dizey kuramının temel kavramı olmalarını sağlamıştır.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Kovaryans matrisi</span>

İstatistik'te, kovaryans matrisi, rassal vektörlerin elemanları arasındaki kovaryansları içeren matristir. Kovaryans matrisi, skaler-değerli rassal değişkenler için var olan varyans kavramının çok boyutlu durumlara genelleştirilmesidir.

<span class="mw-page-title-main">Boşuzay</span>

Doğrusal cebirde, bir matrisinin boşuzayı (kernel, null space) bağıntısını sağlayan tüm vektörlerinin oluşturduğu kümedir. Bir matrisinin 'boşuzay' boyutu, matrisine çarpıldığında sıfır sonucunu veren birbirinden bağımsız yöneylerine göre hesaplanır.

<span class="mw-page-title-main">Öklid uzayı</span> Öklid geometrisinin yüksek boyutlu vektör uzaylarına genelleştirilmesi

Matematikte Öklid uzayı, Öklid geometrisinin üç boyutlu uzayıdır ve bu kavramlar, çok boyutlu olarak genelleştirilir. “Öklid” terimi bu uzayları, Öklid geometrisi olmayan eğimli uzaydan ve Einstein'nın genel görelilik kuramından ayırt eder. Bu adı Yunan matematikçi Öklid'den dolayı almıştır.

Doğrusal cebirde sütun vektör veya sütun matris, m × 1 matrisidir. Örneğin; tek bir m sütunundan oluşan bir matris şöyle ifade edilir;

<span class="mw-page-title-main">Kare matris</span>

Doğrusal cebirde, kare matris, satır ve sütun sayıları eşit olan bir matrisdir. n ye n lik bir matris, boyutu n olan bir kare matris olarak bilinir. Aynı boyuta sahip herhangi iki matriste, toplama ve çarpma işlemleri yapılabilir.

Doğrusal cebirde, satır vektör veya satır matris, 1 × m matrisidir. Örneğin; tek bir m sütunundan oluşan bir matris şöyle ifade edilir;

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Doğrusal cebirde veya daha genel ifade ile matematikte matris toplamı, iki matrisin ilgili girişlerinin eklenmesi işlemidir. Matrisler için diğer bir toplama işlemi türü doğrudan toplamdır.

Successive Over-Relaxation (SOR) lineer denklem sistemlerini çözmek ve sonuca daha hızlı yakınsamak için sayısal lineer cebirde kullanılan bir çeşit Gauss-Seidel metodudur. Daha yavaş yakınsamalar içinse benzer bir metot olan iterative metot kullanılır.

Jacobi metodu, sayısal lineer cebirde lineer denklemlerin diyagonal olarak baskın sistemlerin çözümlerinin belirlenmesi için oluşturulmuş bir algoritmadır. Her diyagonal eleman tek tek çözülür ve yaklaşık bir değer olarak alınır. Bu aşama onlar yakınsayana kadar tekrarlanır. Bu algoritma matris köşegenleştirilmesi Jacobi dönüşüm metodunun sadeleştirilmiş şeklidir. Bu metot daha sonra Carl Gustav Jacob Jacobi olarak isimlendirilmiştir.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

<span class="mw-page-title-main">Jacobi matrisi</span>

Vektör hesabında, Jacobi matrisi bir vektör-değerli fonksiyonun bütün birinci-derece kısmi türevlerini içeren matristir. Bu matris bir kare matris olduğunda, yani fonksiyonun girdi sayısı çıktı sayısının vektör bileşenleriyle aynı sayıdaysa, bu matrisin determinantı Jacobi determinantı olarak adlandırılır. Literatürde sıklıkla Jacobi olarak anılır.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.