Matematik, fizik ve mühendislikte, Öklid vektörü veya kısaca vektör sayısal büyüklüğü ve yönü olan geometrik bir objedir. Vektör, genellikle bir doğru parçası ile özdeşleştirilir. Bir başlangıç noktası A ile bir uç noktası B'yi birleştiren bir ok şeklinde görselleştirilir ve ile belirtilir.
Geometride, elips bir koninin bir düzlem tarafından kesilmesi ile elde edilen düzlemsel, ikinci dereceden, kapalı eğridir.
Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.
Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.
İnsani Gelişme Endeksi, Dünya'daki ülkeler için yaşam uzunluğu, okur yazar oranı, eğitim ve yaşam düzeyi doğrultusunda hazırlanan bir ölçümdür. İnsanların düzgün yaşaması, özellikle çocuk hakları için bir ölçün teşkil eder. Bu araştırma sonucunda bir ülkenin gelişmiş, gelişmekte olan ya da gelişmemiş bir ülke olduğu; bunun yanı sıra ekonomisindeki etkinin yaşam niteliği ne düzeyde etkilediğini gösterir. Dağılım ilk olarak 1990 yılında Pakistanlı ekonomist Mahbub ul Haq tarafından geliştirilmiştir ve 1993 yılından bu yana Birleşmiş Milletler Kalkınma Programı tarafından yıllık Gelişme Raporu'nda sunulur.
Ortalama veya merkezsel konum ölçüleri, istatistik bilim dalında ve veri analizinde kullanılan bir veri dizisinin orta konumunu, tek bir sayı ile ifade eden betimsel istatistik ölçüsüdür. Günlük hayatta ortalama dendiğinde genellikle kast edilen aritmetik ortalama olmakla beraber bu ölçünün çok belirli bazı dezavantajları söz konusudur. Bu yüzden matematik ve istatistikte, bir anakütle veya örneklem veri dizisi değerlerini temsil eden tek bir orta değer veya beklenen değer, olarak medyan (ortanca), mod (tepedeğer), geometrik ortalama, harmonik ortalama vb adlari verilen birçok değişik merkezsel konum ölçüleri geliştirilmiş ve pratikte kullanılmaktadır.
Harmonik ortalama, gözlem sonuçlarının terslerinin aritmetik ortalamasının tersidir.
Normal dağılım kullanılarak bazı olasılık değerlerini elde etmek zor ve zahmetli bir iştir. Bu yüzden, elde edilen normal dağılımın ortalaması sıfıra ve varyansı da bire eşitlenerek daha kolay işlem yapılır. Bu işlem için kullanılan yönteme, standart normal dağılım denir.
Fiyat endeks sayılarını hesaplamak için birçok sayıda değişik formül bulunmaktadır. Bu değişik fiyat endeks sayıları için formüllerin hepsi veri olarak fiyatlar ve miktarları kullanmaktadırlar. Ancak bu aynı verileri değişik olarak birleştirmektedir. Genel olarak bir fiyat endeksi, temel (baz) dönem fiyatlarının, diğer zaman dönemleri fiyatlarının, temel (baz) dönem miktarlarının ve diğer dönem miktarlarının değişik bileşimlerinin toplamı özet halinde bulmaktadır. Değişik fiyat endeksleri formülleri sınıflandırılırken ilk sınıflama harcamaları esas alan endeksler ve fiyat relatiflerinin ağırlıklı ortalamasını esas alan formüller şeklinde yapılabilir.
Bir genelleştirilmiş ortalama; Pisagorik ortalamalarını, yani aritmetik ortalama, geometrik ortalama ve harmonik ortalamayı, aynı tanım formülünde birleştirip kapsayan bir soyut genelleştirmedir. Güç ortalaması veya Holder ortalaması adları da verilmektedir.
İstatistik bilim dalında ağırlıklı ortalama betimsel istatistik alanında, genellikle örneklem, veri dizisini özetlemek için bir merkezsel konum ölçüsüdür. En çok kullanan ağırlıklı ortalama tipi ağırlıklı aritmetik ortalamadır. Burada genel olarak bir örnekle bu kavram açıklanmaktadır. Değişik özel tipli ağırlıklar alan özel ağırlıklı aritmetik ortalamalar bulunmaktadır. Diğer ağırlıklı ortalamalar ağırlıklı geometrik ortalama ve ağırlıklı harmonik ortalamadir. Ağırlıklı ortalama kavramı ile ilişkili teorik açıklamalar son kısımda ele alınacakdır.
Matematik ve istatistik bilim dallarında genelleştirilmiş f-ortalaması merkezsel konum ölçülerinden olan değişik ortalamalar için tek bir genel fonksiyon ve formül bulma ve kullanma çabaları sonucu ortaya çıkarılmıştır. Benzer çabalar biraz değişik diğer bir genelleştirilmiş ortalama formülünü vermiştir. Bu nedenle isim karışıklığını önlemek için f-ortalaması çeşitli diğer isimlerde de anılmaktadır. Bazen yarı-aritmetik ortalama adı kullanılmaktadır. Bu kavramı ve formülü ilk geliştiren Rus matematikçisi A.Kolmogorov adına atfen de bazen Kolmogorov ortalaması olarak isimlendirilmektedir.
Heron formülü, kenar uzunlukları bilinen bir üçgenin alanını hesaplamaya yarayan geometri formülüdür. Yunan matematikçi Heron tarafından bulunmuştur.
Basamak veya hane, matematikte bir sayıyı oluşturan rakamlardan her birinin o sayı içerisindeki konumunu ifade eder.
Eski Mısır matematiği, Eski Mısır'da yaklaşık MÖ 3000 ila 300 yılları arasında, Eski Mısır Krallığı'ndan kabaca Helenistik Mısır'ın başlangıcına kadar geliştirilen ve kullanılan matematiktir. Eski Mısırlılar, saymak ve genellikle çarpma ve kesirleri içeren yazılı matematik problemlerini çözmek için bir sayı sistemi kullandılar. Mısır matematiğinin kanıtı, papirüs üzerine yazılmış, hayatta kalan az sayıda kaynakla sınırlıdır. Bu metinlerden, eski Mısırlıların, mimari mühendislik için yararlı olan üç boyutlu şekillerin yüzey alanını ve hacmini belirlemek gibi geometri kavramlarını ve sabit kesen yöntemi ve ikinci dereceden denklemler gibi cebir kavramlarını anladıkları bilinmektedir.
Thales teoremi veya temel orantı teoremi olarak da bilinen kesişme teoremi, kesişen iki çizginin bir çift paralelle kesilmesi durumunda oluşturulan çeşitli çizgi parçalarının oranları hakkındaki temel geometride önemli bir teoremdir. Benzer üçgenlerdeki oranlarla ilgili teoreme eşdeğerdir. Geleneksel olarak Yunan matematikçi Thales'e atfedilir.
Adını Fransız matematikçi Jean Paul de Gua de Malves'den alan De Gua teoremi, Pisagor teoreminin üç boyutlu bir analojisidir.
Öklid geometrisinde, bir çift merkezli dörtgen, hem bir iç teğet çembere hem de çevrel çembere sahip olan bir dışbükey (konveks) dörtgendir. Bu çemberlerin çevreleri, yarıçapları ve merkezlerine sırasıyla iç çap (inradius) ve çevrel çap (circumradius), iç merkez (incenter) ve çevrel merkez (circumcenter) denir. Tanımdan, çift merkezli dörtgenlerin hem teğetler dörtgeninin hem de kirişler dörtgeninin tüm özelliklerine sahip olduğu anlaşılmaktadır. Bu dörtgenler için diğer isimler kiriş-teğet dörtgeni ve iç teğet ve dış teğet dörtgenidir. Ayrıca nadiren çift çemberli dörtgen ve çift işaretlenmiş dörtgen olarak adlandırılmıştır.
Matematikte logaritmik ortalama, iki pozitif gerçek sayının farkının bu sayıların doğal logaritmalarının farkına oranı olarak tanımlanır. Bu hesaplama, ısı ve kütle transferi içeren mühendislik problemlerinde kullanılabilir.