İçeriğe atla

Henry Cavendish

Saygıdeğer

Henry Cavendish

FRS
Doğum10 Ekim 1731
Nice, Sardinya Krallığı
Ölüm24 Şubat 1810 (78 yaşında)
Londra, İngiltere, Büyük Britanya ve İrlanda Birleşik Krallığı
Milliyetİngiliz
Mezun olduğu okul(lar)Peterhouse, Cambridge
Tanınma nedeniHidrojenin keşfi
Dünya'nın yoğunluğunun ölçülmesi (Cavendish deneyi)
ÖdüllerCopley Madalyası
Kariyeri
DalıKimya, fizik
Çalıştığı kurumlarKraliyet Enstitüsü
Henry Cavendish Portresi Tarih;1754-1834 Arası

Henry Cavendish (10 Ekim 1731, Nice, Fransa - 24 Şubat 1810, Londra, İngiltere), İngiliz kimyager ve fizikçi.[1] Çok çeşitli alanlarda gerçekleştirdiği deneylerle, havanın bileşimi, hidrojenin niteliği ve özellikleri, bazı cisimlerin özgül ısıları, suyun bileşimi ve elektriğin çeşitli özellikleri gibi konularda buluşlar yapmıştır. Cavendish deneyi olarak adlandırılan bir yöntemle Dünya'nın kütlesini ve yoğunluğunu ölçmüştür.

1749-1753 arasında Cambridge Üniversitesi'ne bağlı Peterhouse College'a devam ettiyse de burayı bitiremedi. Londra yakınlarında bir laboratuvar kurarak, bilimsel toplantılar dışında hiç kimseyle özel yakınlık ve dostluk kurmaksızın içine kapanık bir yaşam süren, ailesiyle bile çok ender görüşen, çekingen ve az konuşan bir bilim insanı olarak tanındı. Çalışmalarını yayımlama gereği bile duymayacak kadar laboratuvarına kapanmasına, elli yıla yakın bilimsel çalışma yaşamında yalnızca yirmi kadar inceleme yayımlamasına karşın, 1803'te Fransa'nın sekiz yabancı üyesinden biriydi, adı çağının en büyük bilim insanları arasında anılıyordu. İngiltere'deki Cambridge Üniversitesi'nde, öğretim üyesi arasına katılmayan, hatta diploma bile almayan bu ünlü öğrencisinin adını sonradan Cavendish Laboratuvarı'na vererek ölümsüzleştirdi. 1766'da çeşitli gazların elde edilmesine ilişkin üç bölümlük makalesinden başlayarak yayımlamak amacıyla yazdıkları olduysa da pek çok tamamlanmış araştırmasının ayrıntılarını yayımlamadı.

Cavendish, elektrik yüklü iki cismin arasındaki kuvvetin, aralarındaki uzaklığın karesiyle ters orantılı olduğunu ortaya attı. Elektrostatiğin bu temel yasası daha sonra Fransız fizikçi C.A. Coulomb tarafından geliştirilerek onun adını almıştır. Cavendish bir sığacın (kondansatör) sığasının, sığacı oluşturan levhaların arasına yerleştirilen maddenin cinsine bağlı olduğunu da Michael Faraday'dan önce gösterdi. Matematikte çok iyi bilinen ama, o güne değin elektrik deneylerine ilişkin olarak hiç kullanılmayan potansiyel kavramını özgürce kullandı. Cavendish potansiyel kavramına dayanarak iyi bir iletkenin yüzeyindeki bütün noktaların ortak bir referans noktasına (yer) göre aynı potansiyele sahip oldukları görüşünü geliştirdi. Değişik iletkenlerle yaptığı bir dizi deney sonucunda, iletkenin uçları arasındaki potansiyel farkının, içinden geçen akımla doğru orantılı olduğunu saptayarak bu alanda Alman fizikçi George Simon Ohm'un 1827'de ortaya koyduğu yasayı daha önce bulmuş oldu. Elektrik akımını ölçme olanağı bulunmadığından, kendi vücudunu ölçü aracı olarak kullanıyor, akım şiddetini kestirebilmek için elektrotların uçlarını elleriyle tutarak, elektrik şokunu parmaklarında mı, bileklerine kadar mı, yoksa dirseklerine kadar mı duyduğuna bakıyordu. Yüz yıl kadar sonra, Cavendish'in defterleri ve el yazısı notları bulununca, bütün bu araştırmalar İskoçyalı büyük matematiksel fizikçi James Clerk Maxwell tarafından yinelendi.

Elektrik ile İlgili Çalışmaları

Cavendish'in bu alanda yaptığı çalışmaları özellikle sığa, elektrostatik ve yalıtkanlar üzerineydi. Yaptığı çalışmaların deneysel olarak da ispatına önem veren Cavendish, bu çalışmalarını yayınlama, paylaşma taraftarı değildi. Cavendish'in bu çalışmaları ölümünden yüz yıl sonra matematiksel fizikçi James Clerk Maxwell tarafından yinelenmiş ve dönemin bilim adamlarına önemli kaynaklar haline gelmiştir.

Cavendish, elektrik yüklü iki cismin arasındaki kuvvetin, aralarındaki uzaklığın karesiyle ters orantılı olduğunu ortaya atan ilk bilim insanıdır. Cavendish'in bu çalışması daha sonra Coulomb tarafından geliştirilerek yasa haline gelmiştir. Cavendish tarafından temeli oluşturulan bu çalışma Coulomb Ters Kare Yasası olarak bilinir ve elektrostatiğin temelini oluşturur. Bunu yanı sıra Cavendish, bir kondansatörün sığasının o kondansatörü oluşturan levhaların arasında bulunan maddenin cinsine bağlı olduğunu, Micheal Faraday'dan önce göstermiştir. Yani  di elektrik katsayısından bahseden ilk bilim insanıdır. Elektrik alanında yaptığı çalışmalarla birçok bilim insanına ışık tutan Cavendish, aynı zamanda elektrikte potansiyel kavramını kullanan ilk bilim insanıdır. O dönemlerde elektriğin ölçümü, elektrometre ile yapılmaktaydı. Elektrometre içinde bulunan iki altın yaprağın, elektrikle yüklendiklerinde birbirlerini itmeleri sonucunda aralarında oluşan açıya bakılarak saptanır ve buna elektriklenme derecesi denirdi.

Cavendish, iyi bir iletkenin yüzeyindeki bütün noktaların ortak bir referans noktasına göre aynı potansiyele sahip oldukları görüşüyle potansiyel fark kavramını kullanan ilk bilim insanıdır. Daha sonra iletkenler üzerindeki çalışmalarını devam ettiren Cavendish, değişik iletkenlerle yaptığı deneyler sonucunda, iletkenin uçları arasındaki potansiyel farkın, içinden geçen akım miktarı ile doğru orantılı olduğunu saptamıştır.

Kimya Alanındaki Çalışmaları

Henry Cavendish'in bu alanda yaptığı en önemli çalışma su bileşimi üzerinedir. Cavendish o dönemde suyun bir element olmadığını oksijen ve hidrojenin sentezinden meydana geldiğini ispatlamıştır. Cavendish'in kimya alanındaki çalışmalarının büyük çoğunluğu gazlar üzerineydi. Özellikle hidrojenin yapısıyla yakından ilgilenen Cavendish, makalelerinde asitlerle metallerin tepkimesinden hidrojen gazının oluştuğunu belirtti ve bunu yanar hava olarak adlandırdı. Daha sonrasında hava üzerine yaptığı çalışmalarda havada oksijen ve azotun yanı sıra başka gazlarında olduğunu söyledi. Onun bu tezi yüz yıl sonra aragon ve diğer soygazların bulunmasını kolaylaştırdı.

Dünyanın Kütlesinin ve Yoğunluğunun Hesaplanması (Cavendish Deneyi)

Cavendish'in en önemli deneyi kütle çekimi üzerine yapmış olduğu deneydir. Bu deneyde Cavendish'in ilk amacı büyük kürelerin küçük küreler üzerinde yarattığı kütle çekimi etkisini bulabilmekti. Çünkü bu sayede kütle çekim kuvveti sabitini (G) bulabilir, buradan da yerkürenin kütlesine ulaşabilirdi. Madenden yapılmış bir çubuğu tam ortasından ince bir telle astı. Sonra çubuğun 2 ucuna kurşundan yapılmış iki küçük küreyi taktı. Çubuğun iki ucunda bulunan bu iki küreye büyük kurşun küreleri yaklaştırdı. Büyük ve küçük küreler  arasında oluşan çekim kuvveti sonucu çubuk dönmeye başladı ve bu dönme sonucu teldeki burkulmayı ölçerek çekim kuvvetini ölçtü.  Bilim için bütün imkanlarını kullanmaktan kaçınmayan Cavendish, bu deney için evinin bir odasına bu düzenekleri kurdu ve çok hassas ölçümler olduğu için yan odadan teleskop aracılığı ile bu deneyi gözlemledi çünkü odada hiçbir gürültü dahi olmamalıydı. 17 tane hassas ölçüm sonucunda Newton'un çekim kuvveti denklemlerinden de yararlanarak Yerküre'nin ağırlığının 6 septilyon tona yakın olduğunu açıkladı. Günümüzde ise dünyanın kütlesinin 5.9 septilyon civarında olduğu tahmin ediliyor. 1797 yılında dönemin imkanlarıyla yapılan bu deneyin sonucunun böylesine yakın olması oldukça şaşırtıcı.

Kaynakça

  1. ^ Atkins, P. W. (2015). Chemistry : a very short introduction. Oxford: Oxford University Press. ISBN 978-0199683970. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Manyetik alan</span> elektrik yüklerinin bağıl hareketteki manyetik etkisini tanımlayan vektör alanı

Mıknatıssal veya manyetik alan, bir mıknatısın mıknatıssal özelliklerini gösterebildiği alandır. Mıknatısın çevresinde oluşan çizgilere de, mıknatısın o bölgede oluşturduğu manyetik alan çizgileri denir. Manyetik alan çizgilerinin yönü kuzeyden (N) güneye (S) doğrudur. Manyetik alan hareket eden elektrik yükleri tarafından, zamanla değişen elektrik alanlardan veya temel parçacıklar tarafından içsel olarak üretilir. Manyetik alan vektörel bir büyüklüktür. Yani herhangi bir noktada yönü ve şiddeti ile tanımlanır. Manyetik alan B harfiyle temsil edilir. SI birimi Sırp bilim insanı Nikola Tesla'nın soyadı Tesladır. Manyetik alan Lorentz kuvveti kullanılarak ölçüldüğü için birimi coulumb-metre/saniye başına Newtondur. Saniye başına coulomba bir amper dendiği için T=N(Am)-1 olarak da geçer. Tesla günlük olaylar için çok büyük bir birim olduğundan pratikte, gauss (G) kullanılmaktadır. 1 T=104 G

<span class="mw-page-title-main">Elektrik</span> elektrik yükünün varlığı ve akışı ile ilgili fiziksel olaylar

Elektrik, elektrik yüklerinin akışına dayanan bir dizi fiziksel olaya verilen isimdir. Elektrik sözcüğü Türkçeye Fransızcadan geçmiştir. Elektriğin Türkçe eş anlamlısı çıngı sözcüğüdür. Ayrıca Anadolu ağızlarında elektrik anlamında yaldırayık sözcüğü tespit edilmiştir. Elektrik, pek çok farklı şekillerde var olabilir. Örneğin, yıldırımlar, durgun elektrik, elektromanyetik indüksiyon ve elektrik akımı gibi. Ek olarak, elektriğin elektromanyetik radyasyon, radyo dalgaları gibi oluşumları olduğu bilinmektedir.

<span class="mw-page-title-main">Elektrik yükü</span> bir nesnenin elektriksel alan ile etkileşimi neticesinde ölçülebilen fiziksel özelliği

Elektrik yükü veya elektriksel yük, bir maddenin elektrik yüklü diğer bir maddeyle yakınlaştığı zaman meydana gelen kuvvetten etkilenmesine sebep olan fiziksel özelliktir. Pozitif ve Negatif olmak üzere iki tür elektriksel yük vardır. Pozitif yüklü maddeler, diğer pozitif yüklü maddeler tarafından itilirken, negatif yüklü olanlar tarafından çekilir; negatif yüklü maddeler de negatif yüklüler tarafından itilir ve pozitif olanlar tarafından çekilir. Bir cisimde negatif yükler pozitif yüklere dominantsa, negatif yüklüdür; tersi durumdaysa pozitif yüklüdür; dominantlık söz konusu değilse yüksüzdür. Uluslararası Birim Sistemi (SI) elektrik yükünü coulomb (C) olarak adlandırırken, elektrik mühendisliğinde amper-saat (Ah) olarak ve kimyada da elemanter yük (e) olarak adlandırmak mümkündür. Q sembolü genellikle yükü ifade etmek için kullanılır. Yüklü cisimlerin birbirleriyle nasıl iletişimde olduklarını anlatan çalışma klasik elektromanyetizmadır ve kuantum mekaniğinin göz ardı edilebildiği ölçüde doğrudur.

<span class="mw-page-title-main">Farad</span>

Farad, SI birim sisteminde ve MKS birim sisteminde sembolü F olan sığalık (kapasitans) birimidir.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Elektrik mühendisliği</span> elektrik, elektronikle ilgili mühendislik disiplinleri

Elektrik Mühendisliği veya Elektrik-Elektronik Mühendisliği; elektrik, elektronik ve elektromanyetizma üzerine çalışan ve bunları kullanarak çeşitli donanım ve sistemlerin tasarımı ve geliştirilmesi ile ilgilenen kapsamlı bir mühendislik disiplinidir. 19.yüzyıldan itibaren telefon, telgraf, elektrik enerjisisinin üretimi, dağıtımı ve geniş ölçekte kullanımıyla birlikte ayrı bir disiplin olarak ortaya çıkmıştır. 20. yüzyılda yarı iletken teknolojisinin gelişimi, transistörün icadı, mikroişlemcilerin ve bilgisayarların gelişimi ile daha kapsamlı bir disiplin haline gelmiştir.

<span class="mw-page-title-main">Alessandro Volta</span>

Alessandro Giuseppe Antonio Anastasio Volta elektriğin ve gücün öncüsü, pilin mucidi ve metan gazını keşfiyle tanınan İtalyan fizikçi ve kimyager.

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

<span class="mw-page-title-main">Elektrik mühendisliği tarihi</span>

Elektrik mühendisliği tarihi, elektrik kullanımının günümüze gelirken geçirdiği dönüşümleri, yaşam ve teknolojinin gelişimine etkilerini ve bu gelişime katkıda bulunan bilim insanlarını anlatan tarihtir.

<span class="mw-page-title-main">Pieter Van Musschenbroek</span> Hollandalı bilim insanı

Pieter (Petrus) van Musschenbroek Hollandalı bilim insanı.

<span class="mw-page-title-main">Charles-Augustin de Coulomb</span> Fransız fizikçi (1736 – 1806)

Charles Augustin de Coulomb, Fransız fizikçidir.

<span class="mw-page-title-main">Coulomb kanunu</span> fizik kanunu

Coulomb yasası ya da Coulomb'un ters kare yasası, bir fizik yasasıdır. Elektrik yüklü tanecikler arasındaki elektrostatiği tanımlar. Bu yasa 1785'te Fransız fizikçi Charles Augustin de Coulomb tarafından yayınlanmıştır ve klasik elektromanyetizmadaki önemli bir gelişmedir. Coulomb yasası Gauss yasasından ve vice versa(bahsi geçen hadisenin tam tersinin de geçerli olduğunu anlatmak için kullanılır)dan türetilmiştir. Yasa elektromanyetizmin prensibi durumuna gelmiştir.

Kapasite veya diğer adıyla sığa, bir cismin elektrik yükü depo etme yeteneğidir. Elektrikle yüklenebilen her cisim sığa barındırmaktadır. Enerji depolama aracının en yaygın formu paralel levhalı sığaçlardır. Paralel levhalı sığaçta, sığa iletken levhanın yüzey alanıyla doğru orantılıdır ve levhalar arasındaki uzaklığın ayrımıyla da ters orantılıdır. Eğer levhaların yükleri +q ve –q ise ve V levhalar arasındaki voltajı veriyorsa, sığa C şu şekildedir;

William Nicholson. İngiliz kimyacı, suyun elektrolizinin mucidi, hidrolik mühendisi, mucit ve bilimsel yayıncı.

<span class="mw-page-title-main">Newton'un evrensel kütleçekim yasası</span> Fizik kanunu

Newton'un evrensel çekim yasası (klâsik mekaniğin bir parçasıdır) aşağıdaki gibi ifade edilir;

Her bir noktasal kütle diğer noktasal kütleyi, ikisini birleştiren bir çizgi doğrultusundaki bir kuvvet ile çeker. Bu kuvvet bu iki kütlenin çarpımıyla doğru orantılı, aralarındaki mesafenin karesi ile ters orantılıdır:

Burada:

  • F iki kütle arasındaki çekim kuvvetinin büyüklüğü,
  • G Evrensel çekim sabiti 6.67 × 10-11 N m2 kg-2,
  • m1 birinci kütlenin büyüklüğü,
  • m2 ikinci kütlenin büyüklüğü,
  • r ise iki kütle arasındaki mesafedir.
<span class="mw-page-title-main">Van de Graaff jeneratörü</span> yüksek gerilim biriktirmeye yarayan bir elektrostatik jeneratör

Van de Graaff jeneratörü hareket eden bir kayış yardımıyla içi boş bir kürede yüksek gerilim biriktirmeye yarayan bir elektrostatik jeneratördür. 1929 yılında Amerikalı fizikçi Robert Jemison Van de Graaff tarafından icat edilen bu jeneratörde potansiyel farkı 5 megavolta kadar çıkabilir. Bu araç bir üreteç ve ona paralel bağlı bir kondansatör ile çok büyük bir elektriksel direnç olarak da düşünülebilir.

<span class="mw-page-title-main">Fizik tarihi</span> fizik biliminin tarihi

Fizik, felsefe ürünü bir çalışma alanıdır ve bu yüzden 19. yüzyıla kadar doğa felsefesi diye adlandırıldı. Ünlü fizik bilgini Isaac Newton (1642-1726) bile temel yapıtını "Doğa Felsefesinin Matematiksel İlkeleri" olarak adlandırmış ve kendisini de bir doğa filozofu olarak görmüştür. Günümüzde ise fizik; madde, enerji ve bunların birbiri arasındaki ilişkiyi inceleyen bir bilim dalı olarak tanımlanır. Fizik bir bakıma en eski ve en temel kuramsal bilimdir; onun keşifleri doğa bilimleri'nin her alanı hakkındadır çünkü madde ve enerji; doğanın temel ögeleridir. Diğer bilim dalları genellikle kendi alanlarıyla sınırlıdır ve fizikten sonradan ayrılıp bir bilim dalı olmaya hak kazanmış diye düşünülebilinir. 16. yüzyılda fizik doğa bilimlerinden ayrılmış, Rönesans dönemi sonrasında hızla artan bilgi birikimi ile mekanik, optik, akustik, elektrik gibi alt bilim dalları ortaya çıkmıştır. Fizik günümüzde klasik fizik ve modern fizik olarak ikiye ayrılır.

<span class="mw-page-title-main">Statik elektrik</span>

Statik elektrik, bir maddenin içerisindeki ya da yüzeyindeki elektrik yüklerinin oransızlığı olarak tanımlanmaktadır. Yük, elektrik akımı ya da elektriksel deşarj tarafından uzağa hareket etmeye başlayacağı zamana kadar aynen kalır. Statik elektrik, elektrik telleri ya da diğer iletkenler boyunca akan ve enerji aktaran elektrik akımının tam aksi olarak adlandırılmaktadır.

Elektromanyetik kuramın tarihi özellikle aydınlatma alanındaki atmosferik elektrik ile ilişkilendirilmiş eski ölçümlerle başlar. İnsanlar elektrik hakkında çok az bilgiye sahipti ve bilimsel olarak bu doğa olaylarını açıklayamıyorlardı. 19. yüzyılda elektrik kuramının tarihi ve manyetizma kuramının tarihi kesişti. Elektriğin hareket halinde olduğu her yerde manyetizmanın varlığından da söz edilebileceği için elektriğin manyetizma ile birlikte ele alınması gerektiği çok açıktı. Manyetizma, manyetik indüksiyon düşüncesi geliştirilmeden tam olarak açıklanamadı. Elektrik, elektrik yük düşüncesi geliştirilmeden tam olarak açıklanmadı.

Elektromanyetik kuvvetlerin insan anlayışının zaman çizelgesi olduğu elektromanyetizma zaman çizelgesi, iki bin yıl öncesine dayanmaktadır. Bu çizelge, elektromanyetizma, ilgili teoriler, teknoloji ve olayların tarihinin içinde oluşumlarını listeler.