İçeriğe atla

Hematit

Hematit

Hematit, Fe2O3 formülüne sahip yaygın bir demir oksittir ve kayalarda ve topraklarda yaygındır.[1] Kan taşı olarak da bilinen hematitin en yaygın renkleri kırmızı ve kahverengidir.Hidrotermal damarlarda ve magmatik kayalarda aksesuar minerali olarak bulunabilir. Volkanik kayalarda, birçok metamorfik kayada, kontakt metamorfik yataklarda, birincil veya ikincil olarak sedimanter kayalarda yaygın olarak oluşabilir.[2] Ayrıca siyahtan griye, sarıdan kahverengine kadar içerdiği diğer kayaçlardan ötürü farklı renkler de bulunur. Pigment olarak da kullanılan hematit, çelik üretiminde kullanılan temel mineraldir. Ana demir cevheri olarak çıkarılır. Çeşitleri arasında böbrek cevheri, martit (manyetit sonrası psödomorflar), demir gülü ve spekülarit (speküler Hematit) bulunur. Bu formlar değişmekle birlikte, hepsinin pas kırmızısı bir çizgisi vardır. Hematit saf demirden daha serttir, ancak çok daha kırılgandır. Maghemite, Hematit ve manyetite bağlı bir oksit mineralidir.

Hematit

Bantlı demir oluşumlarında büyük Hematit birikintileri bulunur.Mineral sudan çökelebilir ve bir gölün veya diğer duran suyun altındaki katmanlar halinde toplayabilir.Kil büyüklüğündeki Hematit kristalleri, topraktaki ayrışma işlemlerinin oluşturduğu ikincil bir mineral olarak da ortaya çıkabilir ve goetit gibi diğer demir oksitler veya oksihidroksitler ile birlikte, birçok tropik, eski veya çok yıpranmış toprakların kırmızı renginden sorumludur.Volkanik kayalarda, birçok metamorfik kayada, kontakt metamorfik yataklarda, birincil veya ikincil olarak sedimanter kayalarda yaygın olarak oluşabilir.[3] BET analizlerinde siderit, hematit ve manyetit numunelerinin yüzey alanları sırasıyla 65.55, 59.06, 28.69 m²/g olarak bulunmuştur. Ayrıca, tüm numunelerin SEM görüntülerinden anlaşılacağı üzere; genel bir homojen görüntü sergilediği ve numunelerin partüküllerinde çok fazla bir aglemerasyonun olmadığı anlaşılmaktadır.[3]

Kullanım tarihçesi

Hematit, bazı Hematit çeşitlerinde bulunan kırmızı renklenme nedeniyle Yunanca kan αμμα (haima) kelimesinden türetilmiştir.[1] Hematit rengi bir pigment olarak kullanmak için kendini ödünç verir. Taşın İngilizce adı Latince lapis haematites C'den alınan Fransız hématite pierre'den türetilmiştir.Hardal, değişen miktarlarda Hematit ile %20 ile %70 arasında değişen bir kildir. Kırmızı hardal suyu hidratsız Hematit içerirken, sarı hardal suyu hidratlı Hematit (Fe2O3 · H2O) içerir.[4] Hardal asıl kullanım amacı kalıcı bir renk ile renklendirme içindir.[4]

Bu mineralin kırmızı tebeşir yazımı, insan tarihinin en erken dönemlerinden biriydi. Toz mineral ilk olarak 164.000 yıl önce Pinnacle-Point man tarafından, muhtemelen sosyal amaçlar için kullanıldı.[5] .Hematit kalıntıları da 80.000 yıl önceki mezarlarda bulunur. Polonya'da rydno yakınlarında ve Macaristan'da yaşayan Kırmızı tebeşir madenleri, Yukarı Ren'deki doğrusal çömlek kültürüne ait olan M. Ö. 5000'den yılından itibaren olduğu belirlenmiştir.[6]

Tarih öncesi çağlarda ilk kullanımı 164.000 yıl öncey Pinnacle-Point adamı tarafından yapıldı Toz şeklindeki mineral, Güney Afrika'da bulunan Pinnacle Point mağarasında sosyal farklılaşma için kullanmıştı.[7] Hematit artıkları, takriben MÖ 80000 yılına ait mezarlarda bulunmaktadır. Polonya'da bulunan Rydno ve Macaristan'daki Lovas yakınlarında paleolitik hematit çukurları bilinmektedir (MÖ 60000).

Avrupa'da bilinen en eski yer altı maden ocakları Taşoz adasındaki Tzines ve Vaftochili' dedirler (MÖ 20000 ila MÖ 15000). Almanya'da buna benzer kapsamda tarih öncesi çağa ait madencilik izlerine Bad Sulzburg ve Münster vadîsinde (Kara Orman) rastlanır (MÖ 5000'de orada bulunulmuş Band seramik kültürü). Doğal hematit, manyetit ve siderit örnekleri Karakaya Mineral A.Ş. (Türkiye)'den alındı. Kullanılan Asit Mavisi 185 boyar

maddesi Alvan Sabet A.Ş. (İran)'dan temin edildi. Geri kalan kimyasallar analitik saflıkta olup Alman Merck Firmasından temin edildi. Ayrıca yapılan tüm deneylerde damıtılmış su kullanıldı.[3]

Manyetizma

Hematitin manyetik yapısı, 1950'lerde yaklaşık 1.000 K (730 °C) Curie sıcaklığına sahip ferromanyetik olduğu, ancak son derece küçük bir manyetik momentle (0.002 µB) ortaya çıktığı için önemli bir tartışma ve tartışma konusuydu. Manyetizma, manyetik alan tarafından oluşturulan fiziksel bir olgudur. Elektrik akımı ya da temel bir parçacık herhangi bir manyetik alan yaratabilir. Bu manyetik alan aynı zamanda diğer akımları ve manyetik momentleri de etkiler. Manyetik alan her maddeyi belli bir ölçüde etkiler. Kalıcı mıknatıslar üzerindeki etkisi en çok bilinen bir durumdur. Kalıcı mıknatıslar ferromanyetizmadan dolayı kalıcı manyetik momente sahiptir. Ferromanyetizma kelimesinde yer alan “ferro” ön eki demir elementinin isminden türetilmiştir.[8] Bir maddenin manyetik durumu sıcaklık, basınç, uygulanan manyetik alan gibi faktörlere bağlı olarak değişir. Bu değişkenler değiştiğinde, bir madde birden fazla manyetizma özelliği sergileyebilir. Net manyetik momenti olmayan bir faza yaklaşık 260 K (-13 °C) sıcaklıkta bir düşüş ile farklı geçişler olur.O anki pozisyonun 260 K (-13 °C) sıcaklıkta bir azalma ile kaybolması, anların C ekseni boyunca hizalanmasına neden olan anizotropideki bir değişiklikten kaynaklanır. Bu yapılandırmada, hareket eğimi enerjiyi azaltmaz.Sistemin esas olarak antiferromanyetik olduğu, ancak katyon alanlarının düşük simetrisinin, spin–yörünge kuplajının, C eksenine dik düzlemde olduklarında anların bükülmesine neden olmasına izin verdiği gösterilmiştir.[9][10] Dökme hematitin manyetik özellikleri nano ölçekli muadillerinden farklıdır. Örneğin, hematitin Morin geçiş sıcaklığı parçacık boyutunda bir azalma ile azalır.Bu geçişin bastırılması Hematit nanopartiküllerinde gözlenmiştir ve kristaller kafesindeki safsızlıkların, su moleküllerinin ve kusurların varlığına değinilmiştir.Hematit, mineralin manyetik ve kristal kimyasal özelliklerini etkileyen çeşitli su, hidroksil grupları ve boşluk ikamelerine sahip karmaşık bir katı çözelti oksihidroksit sisteminin bir parçasıdır.[11] Diğer iki uç üyeye protohematit ve hidrohematit denir.

Hematit için geliştirilmiş manyetik zorlamalar, çözeltiden hazırlanan iki hatlı bir ferrihidrit prekürsörünün kuru ısıtılmasıyla elde edilmiştir. Hematit, 289 ila 5,027 oersteds (23-400 kA/m) arasında değişen sıcaklığa bağlı manyetik gidergenlik değerleri sergilemektedir.Bu yüksek koersivite değerlerinin kökeni, artan sıcaklığında farklı parçacık ve kristalit boyutu büyüme oranları ile indüklenen(reteç kullanılmadan mıknatıs veya magnetik alan kullanılarak elde edilen akım) alt parçacık yapısının bir sonucu olarak yorumlanmıştır.Büyüme oranlarındaki bu farklılıklar, nano ölçekte bir alt parçacık yapısının ilerici bir gelişimine çevrilir. Bununla birlikte, daha düşük sıcaklıklarda (350-600 °C), tek parçacıklar kristalleşir; daha yüksek sıcaklıklarda (600-1000 °C), bir altpartikül yapısına sahip kristal agregaların büyümesi tercih edilir. Siderit doğal mineralinin % 74.46 lık giderimle en yüksek performansı gösterdiği, hematit ve manyetit doğal mineralleri için giderim etkinliklerinin sırasıyla % 41.03 ve % 34.34 olarak gerçekleştiği anlaşılmaktadır.[12] Kullanılan doğal minerallerden siderit, hematit ve manyetitin hem adsorpsiyon hem de Fenton ve foto-Fenton proseslerinde boyar maddelerin sulu çözeltilerden gideriminde umut verici bir katalizör olarak kullanabileceği söylenebilir.[13]

Hematitin kristal yapısı
Hematit Yapımı Bileklik
Mars keşif gezici mikroskobik Görüntüleyici görüntü mozaik kısmen fırsat iniş yerinde Kaya gömülü Hematit küre gösterir. Görüntü yaklaşık 5 cm (2 inç) çapındadır.

Maden Atık

Demir madenlerinin atıklarında Hematit bulunur. Yakın zamanda geliştirilen bir süreç olan manyetasyon döneminde minnesota'nın engin Mesabi menzili demir bölgesindeki eski maden atıklarından Hematit toplamak için mıknatıslar kullanır.[14] Falu kırmızı geleneksel İsveç ev boyalarda kullanılan bir pigmenttir. Başlangıçta, bu Falu madeninin atık yapılmıştı.[15]

Mars

Hematitin spektral imzası, NASA Mars Global Surveyor'daki Kızılötesi spektrometre tarafından Mars gezegeninde[16] 2001 Mars Odyssey Mars etrafında yörüngede uzay aracı görüldü. Mineral iki bölgede bolca görüldü. Terra Meridiani 0 ° boylam Mars ekvator sitesi ve Aram kaos yakın site Valles Marineris gibi diğer bazı siteler de Aureum Chaos gibi Hematit gösterdi.[17] Karasal hematit tipik olarak sulu ortamlarda veya sulu değişiklik ile oluşturulan bir mineral olduğu için, bu tespit, iki ikinci yeterince bilimsel olarak ilginç Mars Keşif Rovers belirlenmiş Terra Meridiani bölgesinde bir siteye gönderilmiştir Meridiani Planum . In-situ tarafından araştırmalar Fırsat rover küçük şeklinde çok onun hematit önemli miktarda gösterdi kürelerin gayri bilim ekibi tarafından "yaban mersini" olarak seçilmiştir.Analiz Bu bilyalar görünüşte olduğunu gösterir konkresyonlar bir su çözeltisinden oluşan. "Mars'ta hematit kuruldu sadece nasıl bilmemiz, geçmiş ortamını karakterize ve bu ortam yaşam için elverişli olup olmadığını belirlemek yardımcı olacaktır".

Takı

Takı Hematit popülerliği nedeniyle yas takı kullanımı, Viktorya döneminde İngiltere'de yükseldi.[18][19] Yaldızda bazı Hematit veya demir oksit bakımından zengin kil türleri, özellikle Ermeni bole kullanılmıştır. Hematit, gravür oyulmuş mücevherlerin yaratılmasında olduğu gibi sanatta da kullanılır. Hematit manyetik Hematit olarak satılan sentetik bir malzemedir. Demirtaşı oluşan demir minarelleri oksit, limonit, hematit ve manyetit şeklinde oluşabilir.[20] Hidrotermal damarlarda ve magmatik kayalarda aksesuar minerali olarak bulunabilir.[21]

KÜNYE
Kategori OKSİT MİNERAL
Formül iron(III) oxide, Fe2O3, α-Fe2O3
Kristal Sistem Trigonal
Kristal Biçimi Genellikle ince ya da kalın levhamsı kristaller, rombohedral, piramidal ve nadiren de prizmatikdir.
İkizlenme Penetrasyon ikizi tipikdir.
Sertlik 5-6
Özgül Ağırlık 5,26
Renk ve Şeffaflık Çelik grisi-siyah, opak
Parlaklık Metalik
Ayırıcı Özellik Kırmızı çizgi rengi ve sertliği, kristal şekli ayırıcı özellikleridir.

Galeri

Kaynakça

  1. ^ a b Cornell, Rochelle M.; Schwertmann, Udo (1996). The Iron Oxides. Germany: Wiley. pp. 4, 26. ISBN 9783527285761. LCCN 96031931. Retrieved December 22, 2018.
  2. ^ "Hematit". 22 Mayıs 2017 tarihinde kaynağından arşivlendi. 
  3. ^ a b c "Hematit". 22 Mayıs 2017 tarihinde kaynağından arşivlendi. 
  4. ^ a b "Ochre". Industrial Minerals. Minerals Zone. Archived from the original on November 15, 2016. Retrieved December 22, 2018.
  5. ^ "Researchers find earliest evidence for modern human behavior in South Africa" (Press release). AAAS. ASU News. October 17, 2007. Retrieved December 22, 2018.
  6. ^ Levato, Chiara (2016). "Iron Oxides Prehistoric Mines: A European Overview" (PDF). Anthropologica et Præhistorica. 126: 9–23. Retrieved December 22, 2018.
  7. ^ "↑ Researchers find earliest evidence for modern human behavior in South Africa". 6 Temmuz 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Ocak 2009. 
  8. ^ "manyetizma". 15 Aralık 2005 tarihinde kaynağından arşivlendi. 
  9. ^ Dzyaloshinsky, I. E. (1958). "A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics". Journal of Physics and Chemistry of Solids. 4 (4): 241–255. Bibcode:1958JPCS....4..241D. doi:10.1016/0022-3697(58)90076-3.
  10. ^ Moriya, Tōru (1960). "Anisotropic Superexchange Interaction and Weak Ferromagnetism" (PDF). Physical Review. 120 (1): 91. Bibcode:1960PhRv..120...91M. doi:10.1103/PhysRev.120.91.
  11. ^ Dang, M.-Z.; Rancourt, D. G.; Dutrizac, J. E.; Lamarche, G.; Provencher, R. (1998). "Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials". Hyperfine Interactions. 117 (1–4): 271–319. Bibcode:1998HyInt.117..271D. doi:10.1023/A:1012655729417
  12. ^ "Hematit - Manyetizma". 22 Mayıs 2017 tarihinde kaynağından arşivlendi. 
  13. ^ "Hematit-Sonuç". 22 Mayıs 2017 tarihinde kaynağından arşivlendi. 
  14. ^ Redman, Chris (May 20, 2009). "The next iron rush". Money.cnn.com. Retrieved December 22, 2018.
  15. ^ "Sveriges mest beprövade husfärg" [Sweden's most proven house color] (in Northern Sami). Retrieved December 22, 2018.
  16. ^ "Mars Global Surveyor TES Instrument Identification of Hematite on Mars" (Press release). NASA. May 27, 1998. Archived from the original on May 13, 2007. Retrieved December 22, 2018.
  17. ^ Glotch, Timothy D.; Rogers, D.; Christensen, Philip R. (2005). "A Newly Discovered Hematite-Rich Unit in Aureum Chaos: Comparison of Hematite and Associated Units With Those in Aram Chaos" (PDF). Lunar and Planetary Science. 36: 2159. Bibcode:2005LPI....36.2159G.
  18. ^ "Black Gemstones, Diamonds and Opals: The Popular New Jewelry Trend". TrueFacet.com. October 23, 2015. Retrieved December 22, 2018.
  19. ^ "(What's the Story) Mourning Jewelry?". Retrieved December 22, 2018.
  20. ^ "Hematit". 16 Mayıs 2020 tarihinde kaynağından arşivlendi. 
  21. ^ "Hematit-Takı". 22 Mayıs 2017 tarihinde kaynağından arşivlendi. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Dolomit</span> kalsiyum ve magnezyumlu karbonat birleşiminde mineral

Dolomit, kalsiyum ve magnezyumlu karbonat birleşiminde meydana gelen bir mineral.

<span class="mw-page-title-main">Manyetik alan</span> elektrik yüklerinin bağıl hareketteki manyetik etkisini tanımlayan vektör alanı

Mıknatıssal veya manyetik alan, bir mıknatısın mıknatıssal özelliklerini gösterebildiği alandır. Mıknatısın çevresinde oluşan çizgilere de, mıknatısın o bölgede oluşturduğu manyetik alan çizgileri denir. Manyetik alan çizgilerinin yönü kuzeyden (N) güneye (S) doğrudur. Manyetik alan hareket eden elektrik yükleri tarafından, zamanla değişen elektrik alanlardan veya temel parçacıklar tarafından içsel olarak üretilir. Manyetik alan vektörel bir büyüklüktür. Yani herhangi bir noktada yönü ve şiddeti ile tanımlanır. Manyetik alan B harfiyle temsil edilir. SI birimi Sırp bilim insanı Nikola Tesla'nın soyadı Tesladır. Manyetik alan Lorentz kuvveti kullanılarak ölçüldüğü için birimi coulumb-metre/saniye başına Newtondur. Saniye başına coulomba bir amper dendiği için T=N(Am)-1 olarak da geçer. Tesla günlük olaylar için çok büyük bir birim olduğundan pratikte, gauss (G) kullanılmaktadır. 1 T=104 G

<span class="mw-page-title-main">Kumtaşı</span>

Kumtaşı, kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır. Bir kumun doğal çimentolaşmasından doğan ve kuvars taneleri oranı yüksek olan tortul kayaç; kumtaşı inşaatta, yol ve kaldırımlara taş döşemede, çok ince olanları da bileme taşı olarak kullanılır. Kalkerli kumtaşı ise içinde kireçtaşı taneleri bulunan yeşilimsi bir tür kumtaşı.

<span class="mw-page-title-main">Mineral</span> inorganik kristalleşmiş katı madde

Mineral, doğal şekilde oluşan, homojen, belirli kimyasal bileşime sahip inorganik kristalleşmiş katı bir maddedir. Buna göre minerallerin özellikleri şöyledir; doğal olarak oluşur, herhangi bir parçası bütününün özelliklerini taşır, belirli bir kimyasal formülü vardır, katı hâlde olup nadiren sıvıdır ve inorganiktir.

<span class="mw-page-title-main">Kayaç</span> doğal olarak oluşan mineral agregası

Kayaç, çeşitli minerallerin veya mineral ve taş parçacıklarının bir araya gelmesinden ya da bir mineralin çok miktarda birikmesinden meydana gelen katı birikintilerdir. Kayaç terimi eski Türkçede sahre, yeni Türkçede külte ve yabancı dillerdeki rock, roche, gestein sözcükleri karşılığı kullanılmaktadır.

<span class="mw-page-title-main">Feldspat</span> Kaya oluşturan tektosilikat minerallerinden oluşan bir grup

Feldspat (Feldispat) (KAlSi3O8 – NaAlSi3O8 – CaAl2Si2O8) bir grup kaya formundaki tektosilikat mineralidir ve Dünya kıtasal kabuğunun ağırlıkça yaklaşık % 41'ini oluşturur.

<span class="mw-page-title-main">Biyotit</span>

Biyotit (K(Mg, Fe)3AlSi3O10(F, OH)2), mika ailesinin koyu renkli demirce zengin üyesidir. Diğer mikalar gibi levha yapısına sahiptir. Biyotit siyah parlak görünüşe sahiptir, bu onu diğer ferromagnezyen minerallerden ayırmaya yardım eder. Hornblend gibi biyotit de granit gibi kıtasal kayaçların bileşenidir.Biyotit 1998 yılına kadar mineral parçası olarak görülmüş fakat 1998 yılında Uluslararası Mineral Birliği tarafından mineral grubu olarak adlandırılmıştır. Biyotit terimi hala arazide bulunup analiz edilmemiş koyu renkli mika parçalarını tanımlamada kullanılmaktadır.Biyotit ismi 1847 yılında Fransız fizikçi Jean Baptiste Biot'un anısına ve yaptığı çalışmalara ithafen J.F.L Hausmann tarafından verilmiştir.Biyotit grubun üyeleri levha silikat minerallerdir. Demir,magnezyum,silikon,alüminyum,oksijen ve hidrojen elementleri bir araya gelerek potasyum iyon bağlarıyla birbirlerine zayıf bir şekilde bağlanırlar. "Demir Mika" terimi bazen demir yönünden zengin biyotitler için kullanılır bazı durumlarda dolgun mika yapılı hematitlerde de kullanılır. Biyotit bazı durumlarda "Siyah Mika" olarak da adlandırılır.

<span class="mw-page-title-main">Olivin</span>

Olivin, yüksek sıcaklık silikat minerali ailesidir. Rengi siyahtan zeytin yeşiline değişir. Olivin adını, tephroit (Mn2SiO4), monticellit (CaMgSiO4), larnit (Ca2SiO4) ve kirschsteinite (CaFeSiO4)içeren mineraller grubuyla ilgili bir yapıya denir. Ortorombik simetride kristalleşen olivin grubu minerallerden (Mg,Fe)-olivinlerde Mg2SiO4 ve Fe2SiO4 uç üyeleri arasında tam bir katı çözelti oluştururlar. Ayrıca Fe ve Mn olivinler arasında da sürekli bir seri bulunmaktadır.. Ultrabazik ve bazik kayaçlarda görülen önemli bir mafik mineraldir. Dünit adı verilen ultrabazik kayalar %90,100 olivinden oluşur. Dolomitik Kireç taşı bölgesel ve kontak metamorfizmaları sırasında yüksek dereceli metamorfizma koşullarında forsterit bakımından zengin olivinler oluşur. Olivinlerin kimyasal bileşimleri -plajioklaslarda An (anortit) cinsinden olduğu gibi- içerisinde barındırdığı forsterit (Fo) yüzdesi ile ifade edilir. Örneğin Fo47 şeklindeki bir ifade mineralin % 47 forsteritten, % 53 fayalitten oluştuğunu gösterir.

<span class="mw-page-title-main">Manyetizma</span> class of physical phenomena

Manyetizma, manyetik alan tarafından oluşturulan fiziksel bir olgudur. Elektrik akımı ya da temel bir parçacık herhangi bir manyetik alan yaratabilir. Bu manyetik alan aynı zamanda diğer akımları ve manyetik momentleri de etkiler. Manyetik alan her maddeyi belli bir ölçüde etkiler. Kalıcı mıknatıslar üzerindeki etkisi en çok bilinen bir durumdur. Kalıcı mıknatıslar ferromanyetizmadan dolayı kalıcı manyetik momente sahiptir. Ferromanyetizma kelimesinde yer alan “ferro” ön eki demir elementinin isminden türetilmiştir. Çünkü kalıcı mıknatıs ilk olarak “manyetit – Fe3O4” adı verilen demir elementinin doğal bir formu olarak gözlemlenmiştir. Çoğu madde kalıcı momente sahip değildir. Bazıları manyetik alan tarafından çekilirken (paramanyetizm); bazıları manyetik alan tarafından itilir (diyamanyetizm). Bazıları ise herhangi bir manyetik alana maruz kaldığında daha karmaşık durumlara sevk olur. Manyetik alan tarafından ihmal edilecek ölçüde etkilenen maddeler ise manyetik olmayan maddeler olarak bilinir. Bunlar bakır, alüminyum, gazlar ve plastiktir. Ayrıca, saf oksijen sıvı hale kadar soğutulduğunda manyetik özellikler gösterir.

<span class="mw-page-title-main">Bazalt</span>

Bazalt, volkanik kaya kütlelerinden biri. Siyah renkte ve kesif yığınlar halindedir. Doğada kütle, damar ve akıntı halinde bulunur. Başlıca özelliklerinden birisi, altıgen prizmalar biçiminde, büyük sütunlar meydana getirmesidir. Bu sütunlar, mağma akıntılarının soğuyup büzülmesinden ileri gelmiştir. Sert ve dayanıklı bir taş olduğundan kaldırım, yapı taş, demiryolu, köprü malzemesi olarak kullanılır. Yeryüzünde çok bol olan bazalt, bazı memleketlerde, binlerce kilometrekarelik yerleri örter. Birleşik Krallık'ın kuzeyi, İrlanda, Almanya ve Amerika Birleşik Devletleri'nde büyük Hindistan'da Dekkan bölgesindeki bazalt yığınları 300.000 kilometrekarelik geniş bir bölgeyi kaplar.

<span class="mw-page-title-main">Başkalaşım kayaçları</span> Isı ve basınca maruz kalan kaya

Başkalaşım kayaçları ya da metamorfik kayaçlar, magmatik ve tortul kayaçların çeşitli etkilerle değişime uğraması sonucu oluşurlar. Mermer, başkalaşım kayaçlarına bir örnek olarak verilebilir. Gnays, elmas ve şist de bu kayaçlara verilebilecek diğer örneklerdir.

<span class="mw-page-title-main">Kuvarsit</span>

Kuvarsit, genel olarak kuvars kumu tanelerinin, silisten meydana gelmiş bir çimento ile birbirlerine çok sağlam şekilde bağlanmalarıyla oluşmuş direnci yüksek bir kayaç olup, sedimanter ve metamorfik olmak üzere 2 çeşidi mevcuttur. Kuvarsitin kimyasal bileşimi, kuvars, kumtaşı ve kuvars kumu gibi SiO2 olup, ancak kuvarsit içerisinde çeşitli miktarlarda feldspat, mika, kil, manyetit, hematit, granat, rutil, kireçtaşı vb. bulunabilir.

<span class="mw-page-title-main">Magmatik kayaçlar</span> Magmanın yeryüzüne çıkarken soğumasıyla meydana gelen kayaçlardır.

Magmatik kayaçlar, magmanın yükselerek yer kabuğunun içerisine girip veya yeryüzüne ulaşıp soğuyarak katılaşması sonucu oluşan kayaç türüdür. Üç ana kaya türünden biridir, diğerleri tortul ve metamorfiktir. Magmatik kaya magma veya lavın soğutulması ve katılaşmasıyla oluşur. Magmatik kayaçlar çok çeşitli jeolojik ortamlarda meydana gelir: kalkanlar, platformlar, orojenler, havzalar, büyük magmatik bölgeler, genişletilmiş kabuk ve okyanus kabuğu. (Resim1) Magmatik kayaçlar temel olarak silikat minerallerinden oluşmuşlardır. Magmanın bileşimi temel bazı elementlerin dağılımını yansıtsa da oranları değişmekte ve bu da belli başlı magma tiplerinin oluşmasına neden olur.

<span class="mw-page-title-main">Manyetit</span>

Manyetit, spinal yapısındaki ferrimanyetik, Fe3O4 formülüyle gösterilen demir mineralidir. Ferro-ferrik oksit olarak da bilinen manyetit ayrıca demir 2-3 oksit olarak da adlandırılır. Kimyasal formülü FeO.Fe2O3 şeklinde de yazılmaktadır. Bu gösterim demirin iki farklı değerliğe aynı anda (2+ ve 3+) sahip olduğunu göstermektedir. Manyetik özelliğini 858 K'in üzerinde kaybetmektedir.

Ortorombik kristal sistemi kristal kafes yapılarından biridir. Bu sistemde a, b ve c eksenleri farklı boylarda, bunlar arasındaki açılar da 90o'e eşittir a≠b≠c ve α=β=γ=90° olmalıdır.

Paleomanyetizma, kayaçların eski manyetik alanını inceleyen bilim dalı. Mineraller bulundukları kayaçlara ait manyetik alanın yönünü ve yoğunluğunu kaydederler. Bu kayıtlar tektonik plakaların geçmişteki lokasyonu ve yeryüzünün manyetik alanının geçmişteki durumu hakkında bilgi verir.

<span class="mw-page-title-main">Ayrışma (jeoloji)</span>

Ayrışma, çözünme veya günlenme, yerkabuğunu oluşturan kayaçların yüzey kısımlarında fiziksel ve kimyasal etkenlerle meydana gelen değişimlerdir. Bu etkenlerin yanında atmosferdeki gazlar, sıcaklık, su, organizmalar da ayrışmada etkilidir.

<span class="mw-page-title-main">Demirtaşı</span>

Demirtaşı bir demirli tortul olarak doğrudan çökelir ya da demir bileşiğinin önemli bir kısmını içeren kimyasal değişimle oluşturulan bir tortul kayadır. Bu terim alışıldığı Post-Prekambriyen yaşı, iri bantlı sert nonbandlı ve noncherty tortul kayaçlarıyla sınırlıdır. Farklı kökene sahip Premkambriyen katman, genellikle bantlı demir oluşumları olarak bilinir. Demirtaşı oluşan demir minarelleri oksit, limonit, hematit ve manyetit şeklinde oluşabilir.

<span class="mw-page-title-main">Amfibolit</span>

Amfibolit, esas olarak hornblend ve plajyoklaz minerallerinden oluşan bir kayaçtır. Bu minerallerin yanı sıra içlerinde epidot, ojit, biotit ve almandit mineralleri de yer alabilir. Yeşil, gri ve siyah renkli olan amfibolitler ferromagnezyumlu katılaşım kayaçları ile saf olmayan kalkerlerin orta veya yüksek derecede metamorfizmaya uğramaları sonucu meydana gelmiştir.

Doğal kalıcı mıknatıslanma (NRM), bir kayaç ya da sedimanda kalıcı manyetizma oluşması durumudur. Bazı formlarında, Dünya'nın manyetik alanının rekorunu ve kaya tektonik hareketleriini milyonlarca yıl boyunca koruyabilecek kadar niteliklidir. Doğal kalıcı mıknatıslanma Paleomanyetizmayanın ve manyetotostratigrafinin temelini oluşturur.