İçeriğe atla

Helmholtz bobini

Helmholtz bobini
Helmholtz bobininin sistematik çizimi

Helmholtz bobini tekdüze manyetik alanı üretmeye yarayan bir alettir. Adını Alman fizikçi Hermann von Helmholtz’dan almıştır. Helmholtz bobini aynı eksendeki iki solenoid elektromıknatısından oluşur. Elektromanyetik alan oluşturmalarının yanı sıra, Helmholtz bobini aynı zamanda dış manyetik alanı nötrleştirmek için de kullanılır. Dünyanın manyetik alanı buna örnektir.

Tanım

Helmholtz bobini solenoid diye adlandırılan iki özdeş dairesel manyetik bobinden oluşur. Helmholtz bobinini oluşturabilmek için solenoidler aynı eksene simetrik olarak yerleştirilip, yarıçap 'ye eşit olacak şekilde uzaklığında birbirinden ayrılır. Her iki bobin de aynı doğrultuda eşit miktarda elektrik akımı elde eder.

Bobinlerin merkezindeki manyetik alan farklılığını en aza indirmek için olarak kabul edilir ama bobinlerin merkezleri ve düzlemler arasındaki alan şiddetlerinde %7 oranında değişim vardır. Biraz daha büyük olan değeri, düzlem ve merkezler arasında kalan alanlardaki farklılık oranını düşürür.

Birkaç uygulamada, Dünya'nın manyetik alanını nötrleştirmek için kullanılan Helmholtz bobini, sıfıra çok yakın bir manyetik alan şiddeti üretir.

Matematik

Akım döngüsünü iki eşit parçaya bölen, düzlemdeki manyetik alan çizgileri
Bobin çiftinin yanındaki manyetik alan miktarını gösteren kontür

Uzayda herhangi bir noktadaki kesin manyetik alan hesabı, matematiksel olarak karışık olmakla birlikte Bessel fonksiyonunun uygulama alanına girer. Bobin çifti boyunca olan eksen baz alındığında hesaplama daha kolaylaşır ve alan şiddetinin Taylor serisi genişlemesiyle bulunan ve eksen boyunca bobin çiftlerinin merkez noktalarında uzaklıklarını mesafesi olarak alınması uygundur. Simetrik olarak, genişlemedeki tek mertebe terimleri sıfırdır. Orijin noktası alan şiddeti için büküm noktası olabilsin diye, bir tane bobinin terimi aynı zamanda 0 olmalıdır ve bunun için öncülük eden ve sabit olmayan terimi kullanılır. Basit bobin için büküm noktası kendi merkezine kadar mesafede bobin ekseni doğrultusunda konumu belirlenir. Böylece iki bobinin konumu şeklinde belirlenir.

Merkez noktasındaki manyetik alanının kesin değeri aşağıda ayrıntılı olarak verilmiştir. (Yarıçap = R, bobin sayısı = n, bobinlerin akımı =I, manyetik akı yoğunluğu = B)

boşluğun geçirgenliğidir. ().

Türev

Tek telli döngünün oluşturduğu eksenüstü alan için oluşturulan formülle başlanır. (Biot-savart yasası

= geçirgenlik sabiti =
= bobibin akımı, amper
= bobinin yarıçapı, metre
= bobin uzaklığı, metre

Helmholtz bobini n tane sarım sayısı içerir.

Orta noktadaki alan şiddeti:

Bir tane bobin yerine iki tane bobin de olabilir. (Birinci bobin, x=0 noktasındaki bobindir; ikinci bobin ise, x=R noktasındaki bobindir.) Simetriden dolayı, orta noktadaki alan şiddeti tek bobinin oluşturduğu değerin iki katı kadar olacaktır.

Maxwell bobini

Bobinlerin uzayda oluşturduğu alanın özdeşliklerini arttırabilmek amacıyla, ek bobinler dışarıdan eklenebilir. 1873 yılında James Clerk Maxwell, iki Helmholtz bobininin arasına daha büyük çaplı bir bobin yerleştirmiştir ve alan sapmalarını azaltan bu bobine bazen Maxwell bobini de denir.

Kaynakça

  1. https://en.wikipedia.org/wiki/Helmholtz_coil 4 Mart 2015 tarihinde Wayback Machine sitesinde arşivlendi.
  2. http://www.lightandmatter.com/html_books/0sn/ch11/ch11.html 3 Haziran 2011 tarihinde Wayback Machine sitesinde arşivlendi.
  3. http://circuitcellar.com/library/print/0606/Wotiz191/5.htm []
  4. http://hyperphysics.phy-astr.gsu.edu/HBASE/magnetic/curloo.html#c3 17 Ekim 2018 tarihinde Wayback Machine sitesinde arşivlendi.
  5. http://radphys4.c.u-tokyo.ac.jp/asacusa/wiki/index.php?Cusp%20trap 20 Ocak 2015 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

Aşağıdaki liste rasyonel fonksiyonların integrallerini vermektedir

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">İndüktans</span>

İndüktans elektromanyetizma ve elektronikte bir indüktörün manyetik alan içerisinde enerji depolama kapasitesidir. İndüktörler, bir devrede akımın değişimiyle orantılı olarak karşı voltaj üretirler. Bu özelliğe, onu karşılıklı indüktanstan ayırmak için, aynı zamanda öz indüksiyon da denir. Karşılıklı indüktans, bir devredeki indüklenen voltajın başka bir devredeki akımın zamana göre değişiminin etkisiyle oluşur.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

<span class="mw-page-title-main">Laplace dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Laplace dağılımı Pierre-Simon Laplace anısına isimlendirilmiş bir sürekli olasılık dağılımıdır. Arka arkaya birbiriyle yapıştırılmış şekilde ve bir de konum parametresi dahil edilerek birleştirilmiş iki üstel dağılımdan oluştuğu için, çift üstel dağılımı adı ile de anılmaktadır. İki bağımsız ve tıpatıp aynı şekilde üstel dağılım gösteren bir rassal değişken bir Laplace dağılımı ile işlev görürler. Bu, aynen üstel dağılım gösteren rassal zamanda değerlendirilen Brown devinimine benzer.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Solenoid</span>

Solenoid, sıkıştırılmış sarmal eğri şeklindeki sarılı bir bobindir. Bu terim Fransız fizikçi André-Marie Ampère tarafından sarmal bir bobin tasarlamak üzere bulunmuştur.

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

<span class="mw-page-title-main">Biot-savart yasası</span>

Biot-Savart yasası, uzayın bir noktasındaki manyetik alanı, bu alanı oluşturan akım cinsinden veren matematiksel bir ifade.

Kuantum mekaniğinde, spin-yörünge etkileşimi(spin-yörünge etkisi, spin-yörünge bağlaşımı) parçacığın dönüşünün hareketiyle etkileşimidir. En çok bilinen örnek ise, elektronların dönüşü ile elektronların çekirdek etrafındaki dönüşünden dolayı oluşan manyetik alandan dolayı oluşan elektromanyetik etkileşim ve buna bağlı olan elektronların atomik enerji seviyesindeki değişim. Bu tayf çizgilerinden saptanabilir. Buna benzer bir diğer etki proton ve nötronların çekirdekte dönmesinden dolayı oluşan olan Açısal momentum ve güçlü nükleer kuvvet, nükleer kabuk modelindeki değişime neden olur. Spintronik alanında, yarı iletkenlerde ve diğer materyallerde spin yörünge etkileşimi yeni teknolojik gelişimler için araştırılmaktadır.

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

Breit denklemi, Gregory Breit tarafından 1929'da Dirac denklemine dayalı olarak türetilmiş kökler kuralının ilk kuralına göre iki ya da daha fazla kütleli spini -1/2 olan parçacıkların elektromanyetizma açısından etkileşimini tanımlayan rölativistik dalga denklemidir. Manyetik etkileşimlerin ve  kuralına göre gecikme etkisinin nedeni açıklar. Diğer kuantum elektrodinamik etkileri ihmal edildiğinde, bu denklemin deney ile iyi bir uyum içinde olduğu görülmüştür. Bu denklem başlangıçta Darwin Lagrangian tarafından türetildi ancak daha sonra Wheeler-Feynman emme teorisi ve en sonunda kuantum elektrodinamiği tarafından doğrulandı.

Daha yaygın ismiyle Goldman denklemi olarak bilinen Goldman-Hodgkin-Katzl denklemi, hücre zarıfizyolojisinde, hücre zarından geçen tüm iyonları hesaba katarak hücre zarındaki ters potansiyeli belirlemek için kullanılır.