İçeriğe atla

Helikaz

E. coli helikazı RuvA'nın yapısı

Helikazlar tüm canlılar için hayatî önem taşıyan bir enzim sınıfıdır. Nükleik asitlerin fosfodiester omurgası üzerinde hareket ederek birbirlerine hidrojen bağlarıyla bağlanmış nükleik asit ipliklerini (DNA'nın, RNA'nın veya RNA-DNA hibritlerinin) ayrıştırır. Bunun için ATP hidrolizinden açığa çıkan enerjiyi kullanır.

İşlev

Çoğu hücresel işlev (DNA ikileşmesi, transkripsiyon, DNA tamiri, ribozom biyongenezi gibi) nükleik asit ipliklerinin ayrışmasını gerektirir. DNA ikili sarmal'ının veya kendi kendisiyle baz eşleşmesi yapmış RNA moleküllerinin ipliklerinin ayrışmasında genelde helikazlar görev alır. Bu süreçte ATP hidrolizinden kaynaklanan enerji kullanılır. Pek çok helikaz vardır (E. coli'de kesin bilinen 14, insanda 24) bunların çokluğu, iplik ayrışmasının gerekli olduğu süreçlerin çeşitliliğinin bir sonucudur. Helikazlar bir iplik üzerinde her bir helikaz için farklı olabilecek bir doğrultu ve süreçleme ile adım adım ilerlerler.

Helikazlar farklı yapılara ve oligomerleşme hallerine sahiptir. DnaB-benzeri helikazlar simit şekilli heksamer (altılı) DNA'yı çözmelerine karşın, başka enzimler monomer veya dimer olarak çalışırlar. Helikazlar ikileşme çatalının genişlemesi için pasif şekilde beklemezler, aktif olarak çatalın açılmasını sağlarlar.[1] Hücre içinde helikazlarla beraber çalışan yardımcı proteinler sayesinde DNA'nın çözülmesi helikazın tek başına çalışmasına kıyasla çok daha hızlı olabilir.[2]

Helikaz kodlayan bir gendeki mutasyonlar Werner sendromuna yol açar, bu bozuklukta erken yaşlanma görülür.

Yapısal özellikler

Helikazlar belli derecede amino asit dizi benzerliği gösterirler; ortak dizi motiflerine sahiptirler. Bu dizilerin ATP hidrolizi ve nükleik asit iplik üzerinde ilerleme ile ilgilidir. Amino asit dizisinin değişken kısmı ise her helikazın kendine has özellikleri ile ilgilidir.

Tanımlanmış helikaz motiflerine dayanarak herhangi bir proteine muhtemel bir helikaz etkinliği addetmek mümkündür ama bir motifin varlığı bir proteinin helikaz olduğunu teyid etmeye yetmez. Korunmuş dizi motifleri enzimler arasında evrimsel homolojiyi desteklerler. Helikaz motiflerin varlığına ve biçimine dayanılarak, helikazlar 4 üst aileye ve 2 küçük aileye ayrılmıştır. Aşağıda bunların ayrıntıları verilmiştir.

Üst aileler

  • Üst aile I: UvrD (E. coli, DNA tamiri), Rep (E. coli, DNA ikileşmesi), PcrA (Staphylococcus aureus, rekombinasyon), Dda (bacteriofaj T4, ikileşme başlatımı), RecD (E. coli, rekombinasyonlu tamir), TraI (F plasmidi, konjügasyonlu DNA transferi).
  • Üst aile II: RecQ (E. coli, DNA tamiri), eIF4A (ekmek mayası, RNA çevrimi), WRN (insan, DNA tamiri), NS3[3] (Hepatit C virüsü, ikileşme). TRCF (Mfd) (E.coli, transkripsiyon-tamir birleşimi).
  • Üst aile III: LTag (Simian Virüs 40, ikileşme), E1 (human papillomavirus, ikileşme), Rep (Adeno-ilişkili Virüs, ikileşme, viral bütünleşme, virion paketlemesi).
  • DnaB-benzeri aile: dnaB (E. coli, ikileşme), gp41 (bakteriofaj T4, DNA ikileşmesi),T7gp4 (bakteriofaj T7, DNA ikileşmesi).
  • Rho-benzeri aile: Rho (E. coli, transkripsiyon sonlanması).

Bu üst ailelerin tüm olasıl helikazları kapsamamaktadır. Örneğin XPB ve ERCC2 yukarıda belirtilen ailelerin hiç birine ait değildir.

Kaynakça

  1. ^ Johnson DS, Bai L, Smith BY, Patel SS, Wang MD (2007). "Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped t7 helicase". Cell. 129 (7). ss. 1299-309. doi:10.1016/j.cell.2007.04.038. PMID 17604719. 
  2. ^ "Researchers solve mystery of how DNA strands separate". 3 Temmuz 2007. 22 Kasım 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Temmuz 2007. 
  3. ^ Dumont S, Cheng W, Serebrov V, Beran RK, Tinoco Jr I, Pylr AM, Bustamante C, "RNA Translocation and Unwinding Mechanism of HCV NS3 Helicase and its Coordination by ATP", Nature. 2006 Jan 5; 439: 105-108.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">DNA</span> Canlıların genetik bilgilerini barındıran molekül

Deoksiriboz nükleik asit veya kısaca DNA, tüm organizmaların ve bazı virüslerin canlılık işlevleri ve biyolojik gelişmeleri için gerekli olan genetik talimatları taşıyan bir nükleik asittir. DNA'nın başlıca rolü bilgiyi uzun süre saklamasıdır. Protein ve RNA gibi hücrenin diğer bileşenlerinin inşası için gerekli olan bilgileri içermesinden dolayı DNA; bir kalıp, şablon veya reçeteye benzetilir. Bu genetik bilgileri içeren DNA parçaları gen olarak adlandırılır. Bazı DNA dizilerinin yapısal işlevleri vardır, diğerleri ise bu genetik bilginin ne şekilde kullanılacağının düzenlenmesine yararlar.

<span class="mw-page-title-main">Nükleik asit</span> bilinen tüm yaşam için gerekli olan büyük biyomoleküller sınıfı

Nükleik asitler, bütün canlı hücrelerde ve virüslerde bulunan, nükleotid birimlerden oluşmuş polimerlerdir. En yaygın nükleik asitler deoksiribonükleik asit (DNA) ve ribonükleik asit (RNA)'dır. İnsan kromozomlarını oluşturan DNA milyonlarca nükleotitten oluşur. Nükleik asitlerin başlıca işlevi genetik bilgi aktarımını sağlamaktır.

<span class="mw-page-title-main">Transkripsiyon (genetik)</span> bir DNA parçasının RNAya kopyalanması süreci

Transkripsiyon, yazılma veya yazılım, DNA'yı oluşturan nükleotit dizisinin RNA polimeraz enzimi tarafından bir RNA dizisi olarak kopyalanması sürecidir. Başka bir deyişle, DNA'dan RNA'ya genetik bilginin aktarımıdır. Protein kodlayan DNA durumunda, transkripsiyon, DNA'da bulunan genetik bilginin bir protein veya peptit dizisine çevirisinin ilk aşamasıdır. RNA'ya yazılan bir DNA parçasına "transkripsiyon birimi" denir. Transkripsiyonda hata kontrol mekanizmaları vardır, ama bunlar DNA çoğalmasındakinden daha az sayıda ve etkindirler; dolayısıyla transkripsiyon DNA çoğalması kadar aslına sadık değildir.

<span class="mw-page-title-main">DNA onarımı</span> Hücresel mekanizma

DNA onarımı, DNA moleküllerindeki hataları onarım mekanizmalarını tanımlamaktadır. İnsan hücrelerinde metabolik aktiviteler ve çevresel faktörler sonucu günde 1 milyon hücrenin zarar görmesi olasıdır. Bu etkenler, DNA'nın yapısını ve dahası diğer nesillere aktarılan genetik bilgiyi değiştirebilirler. Bu değişimler yararlı olabileceği gibi, ölümcül sonuçlara neden olabilecek kadar da zararlı olabilir. Bu yüzden, bütün canlı hücreleri, evrim süreçleri boyunca nesillere değişmeden aktarılması gereken DNA molekülünü koruma mekanizmaları geliştirmişlerdir.

Moleküler biyolojideki ilk gelişmeler, hızlı çoğalan ve kullanışlı bakteri ve virüslerin incelenmeleriyle elde edilmiştir. İlerideki birçok çalışma, öncelikle prokaryotlarda, sonrasında ökaryotlara uyarlanarak sağlanmıştır.

RNA polimerazlar, bir DNA veya RNA molekülündeki bilgiyi RNA molekülü olarak kopyalayan bir enzimler ailesidir. Bir gende yer alan bilginin RNA molekülü olarak kopyalanma işlemi transkripsiyon olarak adlandırılır. Hücrelerde RNAP genlerin RNA zincirleri halinde okunmasını sağlar. RNA polimeraz enzimleri, tüm canlılarda ve çoğu virüste bulunur. Kimyasal bir deyişle, RNAP, bir nükleotidil transferaz enzimidir, bir RNA molekülünün üç ucunda ribonükleotitlerin polimerleşmesini sağlar.

<span class="mw-page-title-main">Prokaryotlarda DNA replikasyonu</span>

Prokaryotik hücrelerin DNA ikileşmesinde, ikili sarmal açılır ve sentezin başladığı yer olan ikileşme çatalı oluşur. Proteinler açılan sarmalı kararlı kılar ve ikileşme çatalının önünde oluşan sarılma gerilimini hafifletirler. Sentez, kalıp boyunca belirli bölgelerden RNA Primazın, DNA Polimeraz III'ün polimerizasyonu başlatabileceği serbest 3'-OH ucunu sağlayan kısa bir RNA parçasını sentezlemesiyle başlar. İkili sarmalın antiparalel yapısından dolayı polimeraz III, kesintili zincirde 5'-3' yönünde sürekli DNA sentezi yapar. Çatalın solunda DNA sentezi 5'-3' yönünde kesintisiz olarak devam eder. Kesintili zincir denen karşı zincirde kısa Okazaki parçaları sentezlenir ve bu parçalar daha sonra DNA ligaz ile birleştirilir. DNA Polimeraz I, RNA primerini uzaklaştırır ve yerine DNA sentezler, ortaya çıkan polinükleotidler DNA ligaz ile birleştirilir. Böylece sentezi tamamlanan iki yeni çift dallı DNA molekülü birbirinden ayrılr ve biri atasal hücrede kalırken diğeri oğul hücreye gider.

<span class="mw-page-title-main">DNA ligaz</span> DNA Replikasyonu Sırasında İki DNA Sarmalını Birleştiren Ligaz Tipi

Moleküler biyolojide DNA ligaz iki DNA molekülünü uç uca birleştiren özel bir ligaz tipidir. DNA ligaz DNA tamiri, DNA ikileşmesinde rol oynar. Ayrıca, ökaryotlarda mayoz bölünmedeki krosoverde ve memelilerde, bağışıklık sisteminin çeşitliliğini sağlayan rekombinasyon süreçlerinde rol oynarlar. DNA ligaz enzimi moleküler biyoloji laboratuvarlarında rekombinant DNA uygulamalarında kullanılır.

Moleküler biyolojide bir baz çifti, birbirine ters doğrultuda iki DNA veya RNA zinciri üzerinde bulunan, biribirine hidrojen bağları ile bağlanmış iki nükleobazdır. Standart Watson-Crick baz eşleşmesinde, adenin (A), timin (T) ile, guanin de sitozin ile bir baz çifti oluşturur. RNA içinde olan baz çiftlerinde timin'in yerini urasil (U) alır. Watson-Crick tipi olmayan ve alternatif hidrojen bağlarıyla meydana gelmiş baz çiftleri de oluşabilir, özellikle RNA'da; bunlara Hoogsteen baz çiftlerinde de rastlanır.

DNA metilasyonu DNA'nın bir kimyasal değişimdir, kalıtsal olup sonradan ilk dizi geri gelecek şekilde çıkartılabilir. Bu özelliği nedeniyle epigenetik koda aittir ve en iyi karakterize edilmiş epigenetik mekanizmadır. Metilasyon tüm virüslerde görülen, öz ile öz-başka ayrımına yarayan bir yetenek olduğu için epigenetik kodun, kadim viral enfeksiyon olaylarından kalma bir mekanizma olabileceği öne sürülmüştür.

<span class="mw-page-title-main">DNA polimeraz</span>

DNA polimeraz, DNA replikasyonunu sağlayan bir enzimdir. Bu enzimler bir DNA ipliğini kalıp olarak kullanır, onu okuyup, onun boyunca deoksiribonükleotitlerin polimerizasyonunu katalizler. Yeni polimerleşmiş molekül kalıp ipliği tamamlayıcıdır ve kalıp ipliğin eski eşi ile aynı yapıya sahiptir.

Bir polimeraz, merkezî işlevi RNA ve DNA gibi nükleik asit polimerleri ile ilgili olan bir enzimdir. Bir polimerazın esas fonksiyonu, mevcut bir DNA veya RNA kalıbı kullanarak, ikileşme veya transkripsiyon süreci içinde, yeni bir DNA veya RNA'nın polimerizasyonudur. Bu enzimler, bir grup başka enzim veya protein eşliğinde, çözeltide bulunan nükleotitleri alırlar ve baz eşleşme etkileşimlerinden yararlanarak, bir polinükleotit iplikçiğin karşısında yeni bir polinükleotit iplikçiğinin sentezini katalizler.

<span class="mw-page-title-main">Nükleaz</span>

Nükleaz, nükleik asitleri kısmen veya tamamen parçalayan bir enzim tipidir. Bu enzimler gerek sindirim sisteminde, gerek de hücre içinde, örneğin hata tamiri, gen regülasyonu, viral savunma gibi önemli işlevlerin gerçekleşmesinde rol oynarlar. Nükleazlar, tiplerine bağlı olarak, DNA ve RNA zincirlerini çeşitli biçimlerde kesebilirler. Gen mühendisliğinde farklı nükleazlar DNA moleküllerinin arzu edilen biçime sokulmasında, ayrıca DNA ve RNA moleküllerinin yapılarının anlaşılmasında birer araç olarak kullanılır.

Moleküler biyolojide anlam, DNA ve RNA gibi nükleik asit moleküllerinde bulunan bilginin yönünün (polaritesinin) başka nükleik asitlerle karşılaştırılmasında kullanılan bir kavramdır. Hangi bağlamda kullanıldığına bağlı olarak "anlam" terimi farklı manalara gelebilir. Bir manasıyla "anlam", bir nükleik asidin protein kodlama özelliğidir. Bir diğer manasıyla "anlam", tek iplikli RNA virüslerinde, viriondan çıkan genomik RNA'nın doğrudan protein kodlayabilme özelliğidir. "Antianlamlı" nükleik asitlerden söz edilince, anlamlı bir mRNA'nın ifadesini engelleyen, komplemanter dizili bir nükleik asit kastedilir.

<span class="mw-page-title-main">Ters transkriptaz</span> RNA şablonundan DNA üreten bir enzim

Biyokimyada bir ters transkriptaz veya RNA'ya bağımlı DNA polimeraz, tek iplikli bir RNA molekülü okuyup tek iplikli DNA üreten bir DNA polimeraz enzimidir. Bu enzim, ayrıca, RNA tek iplikli cDNA şeklinde okunduktan sonra çift iplikli DNA oluşmasında da görev alır. Normal transkripsiyon DNA'dan RNA sentezidir; dolayısıyla ters transkripsiyon bu sürecin tersidir.

<span class="mw-page-title-main">DNA kıskacı</span>

DNA kıskacı, kayar kıskaç olarak da bilinir, DNA ikileşmesinde ilerleyicilik-sağlayıcı bir faktör olarak görev yapan bir protein, ayrıca bu proteinde bulunan bir katlanma yapısıdır. DNA polimeraz III holoenziminin önemli bir parçası olarak, kıskaç protein DNA polimeraza bağlanır ve enzimin DNA'nın kalıp ipliğinden ayrışmasını engeller. DNA sentez reaksiyonunun hız sınırlayıcı adımı polimerazın DNA kalıbına bağlanması olduğu için, kayar kıskacın var olması, her birleşme olayı için polimerazın uzayan ipliğe eklediği nükleotit sayısını dramatik olarak artırır. Bunun nedeni, kıskaçla polimeraz arasındaki protein-protein etkileşimlerinin daha kuvetli ve daha spesifik olmasıdır, polimeraz-DNA iplik etkileşimine kıyasla. DNA kıskacının varlığı DNA sentez hızını 1000 katı hızlandırır, süreçlenmesiz polimeraza kıyasla.

<span class="mw-page-title-main">Gen ifadesinin düzenlenmesi</span>

Gen ifadesinin düzenlenmesi ya da gen ifadesinin denetimi, hücrelerin ve virüslerin genlerindeki bilgiyi gen ürünlerine çevirmesini kapsayan süreçler için kullanılan bir terimdir. İşlevsel bir genin ürünleri RNA veya protein olabilir; bilinen mekanizmaların en temeli protein kodlayan genlerin düzenlenmesidir. Gen ifadesinin, DNA-RNA transkripsiyonundan, proteinin translasyon sonrası değişimlerine kadar olan herhangi bir adımı değiştirilip, ayarlanabilmektedir.

<span class="mw-page-title-main">Moleküler motor</span>

Moleküler motorlar canlı organizmalarda hareketi sağlayan biyolojik moleküler makinalardır. Genel olarak, bir motor enerji kullanıp onu hareket veya mekanik işe dönüştürür. Örneğin, çoğu protein-temelli moleküler motor ATP'nin hizdrolizi ile açığa çıkan serbet enerjisini kullanıp onu mekanik işe dönüştürür. Enerjetik verimlilik açısından bu tür motorlar hâlen mevcut insan yapımı motorlardan üstündürler. Moleküler motorlarla makroskopik motorlar arasındaki önemli bir fark, moleküler motorların termal banyo içinde çalışmalarıdır, bu ortamda termal gürültüden kaynaklanan fluktuasyonlar önemli düzeydedir.

<span class="mw-page-title-main">Santral dogma (moleküler biyoloji)</span> Biyolojik bir sistem içindeki genetik bilgi akışının açıklanması

Moleküler biyolojinin santral (merkezi) dogması, biyolojik bir sistem içindeki genetik bilgi akışının bir açıklamasıdır. Orijinal anlamı bu olmasa da, genellikle "DNA RNA'yı, RNA proteini yapar" şeklinde ifade edilir İlk olarak 1957'de Francis Crick tarafından ifade edilmiş, 1958'de ise yayınlanmıştır.

<span class="mw-page-title-main">Litik döngü</span>

Litik döngü, viral üremenin iki döngüsünden biridir, diğeri lizojenik döngüdür. Litik döngü, enfekte olmuş hücrenin ve zarının tahrip olmasıyla sonuçlanır. Yalnızca litik döngüden geçebilen bakteriyofajlara virülan fajlar denir.