İçeriğe atla

Hartogs devam teoremi

Kontrol Edilmiş

Matematikte, Hartogs teoremi, çok değişkenli karmaşık analizde birden fazla karmaşık değişkene sahip holomorf fonksiyonların analitik devamlarıyla ilgili olan ve karmaşık analizin bir değişkenli fonksiyonlar teorisinde varolmayan bir sonuçtur.

Tarihçe

Teoremin ilk hali Friedrich Hartogs tarafından kanıtlanmıştır[1] ve bu haliyle Hartogs önsavı ya da Hartogs fenomeni olarak da bilinmektedir. Erken Sovyet kaynaklarında ise William Osgood ve Arthur Barton Brown'un daha sonraki çalışmalarına[2] atfen Osgood-Brown teoremi olarak adlandırıldığı da görülmektedir.[3]

Hartogs'un kanıtında Cauchy integral formülünün birden fazla kompleks değişkenli fonksiyonlar için kullanıldığı görülür. Daha modern kanıtlarda ise Bochner–Martinelli–Koppelman formülü ya da homojen olmayan Cauchy–Riemann denklemlerinin tıkız destekli çözümleri kullanılmaktadır.[4]

Teoremin ifadesi

İki ya da daha fazla kompleks boyutlu Cnde sınırlı bir D bölgesi alalım ve K kümesi D bölgesinde göreceli olarak tıkız olan bir küme olsun. üzerinde tanımlı her holomorf fonksiyon, D bölgesinin tamamına holomorf olarak devam ettirilebilir.

Bu sebeple, n≥ 2 için Cn 'de, bir K tıkız kümesinin tümleyeninin üzerinde tanımlı analitik bir F fonksiyonu Cn 'de analitik bir fonksiyona (biricik olarak) uzatılabilir. Aynısı yine bir topun tümleyeninde veya tıkız bir altkümenin D polidiski içinde tanımlı olan F için de geçerlidir. Bu yüzden, çok değişkenli bir karmaşık fonksiyonun tekillik kümesinin desteği tıkız olamaz ve belli bir yönde 'sonsuza doğru kaçar'. Bu haliyle, bu teorem aynı zamanda birden fazla değişkene sahip holomorf fonksiyonlar için korunmalı tekilliklerin ve kaldırılabilir tekilliklerin aynı olduğunu ifade eden temel bir sonuçtur.

Hartogs fenomeni

İki kompleks değişkenli bir örnek vermek gerekirse, varsayımıyla, 'deki polidiskin içinde yer alan şu bölgeyi ele alalım:

Burada, ile kastedilen birim dairelerin kartezyen çarpımıdır; yani, .

Teorem Hartogs (1906): üzerinde tanımlı her holomorf fonksiyon 'nin tamamına analitik olarak devam ettirilebilir. Başka bir deyişle, böyle bir holomorf fonksiyon ise, üzerinde tanımlı öyle bir holomorf fonksiyonu vardır ki üzerinde sağlanır.

Hartogs teoreminin bu dar kapsamlı hali Hartogs fenomeni olarak bilinir.

Notlar

  1. ^ Hartogs'un yayınladığı haliyle Hartogs (1906)'a bakınız. Ayrıca, Osgood (1966, ss. 56–59), Severi (1958, ss. 111–115) ve Struppa (1988, ss. 132–134) gibi tarihi taramalardaki tarifleri görünüz. Özellikle son kaynakta (s. 132), yazar şunu açıkça yazmaktadır:"Hartogs 1906'un başlığında da tarif edidiği ve okuyucunun yakında göreceği üzere, kanıttaki kilit araç Cauchy integral formülüdür".
  2. ^ Brown (1936) ve Osgood (1929) kaynaklarına bakınız.
  3. ^ Örneğin, Vladimirov (1966, s. 153)
  4. ^ Cauchy-Riemann yaklaşımı Leon Ehrenpreis tarafından başlatılmıştır; Ehrenpreis 1961'a bakınız.

Kaynakça

  • Osgood, William Fogg (1966) [1913], Topics in the theory of functions of several complex variables (unabridged and corrected bas.), New York: Dover, ss. IV+120, JFM 45.0661.02, MR 0201668, Zbl 0138.30901 .
  • Severi, Francesco (1931), "Risoluzione del problema generale di Dirichlet per le funzioni biarmoniche", Rendiconti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, series 6 (İtalyanca), cilt 13, ss. 795-804, JFM 57.0393.01, Zbl 0002.34202 .
  • Struppa, Daniele C. (1988), "The first eighty years of Hartogs' theorem", Seminari di Geometria 1987–1988, Bologna: Università degli Studi di Bologna – Dipartimento di Matematica, ss. 127-209, MR 0973699, Zbl 0657.35018 .

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

Ana başlıklarına göre karmaşık analiz konuları:

Matematiğin bir alanı olan karmaşık analizde, karmaşık değişkenli ve karmaşık değerler alan bir f fonksiyonu

<span class="mw-page-title-main">Morera teoremi</span> Matematik terimi

Matematiğin bir dalı olan karmaşık analizde, Giacinto Morera'nın ardından adlandırılan Morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için kullanılan temel bir sonuçtur. İtalyan matematikçi Giacinto Morera'nın adını taşımaktadır.

<span class="mw-page-title-main">Harmonik fonksiyon</span>

Matematiğin matematiksel fizik alanında ve rassal süreçler teorisinde bir harmonik fonksiyon, Rn'nin U gibi açık bir kümesi üzerinde f : UR şeklinde tanımlı, Laplace denklemini, yani

<span class="mw-page-title-main">Cauchy integral formülü</span>

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

Karmaşık analizde Charles Émile Picard'ın ismine atfedilen Picard teoremi analitik bir fonksiyonun görüntü kümesiyle ilişkin ayrı ayrı ama yine de birbirine bağlı iki teoremdir.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

Karmaşık analizde, bir kaldırılabilir tekillik veya daha düzgün bir söylemle, bir holomorf fonksiyonun kaldırılabilir tekilliği, fonksiyonun görünüşte holomorf olmadığı; ancak daha yakın bir incelemeden sonra fonksiyonun tanım kümesinin bu tekilliği de içerecek şekilde genişletilebileceği bir noktadır.

Matematikte Dini ve Dini-Lipschitz testleri, bir fonksiyonun Fourier serisinin bir noktada yakınsadığını kanıtlamak için kullanılabilen oldukça kesin testlerdir. Bu testler, Ulisse Dini ve Rudolf Lipschitz'in arkasından isimlendirilmiştir.

Matematiğin bir alt dalı olan karmaşık analizde, Montel teoremi holomorf fonksiyon aileleriyle ilgili bir teoremdir. İsmini Paul Montel adlı matematikçiden almıştır ve şunu ifade etmektedir:

Kalkülüste tek taraflı limit, x reel değişkenli bir f(x) fonksiyonun her iki limitidir. Burada x, ya üstten ya da alttan belirli bir noktaya yaklaşır. Bu limit şöyle sembolize edilebilir:

veya veya ya da

Holomorf fonksiyonlar karmaşık analizin temel çalışma araçlarından biridir. Bu fonksiyonlar karmaşık düzlemin yani C'nin açık bir altkümesinde tanımlı, bu altkümedeki her noktada karmaşık anlamda türevli ve aldığı değerler yine C içinde olan fonksiyonlardır.

Matematikte, Bochner-Martinelli formülü, Cauchy integral formülünün birden fazla kompleks değişkenli fonksiyonlara yönelik genellemelerinden birisidir. Enzo Martinelli ve Salomon Bochner tarafından bağımsız olarak kanıtlanmıştır.

<span class="mw-page-title-main">Casorati-Weierstrass teoremi</span>

Karmaşık analizde Casorati-Weierstrass teoremi, holomorf fonksiyonların esaslı tekillikler civarındaki olağanüstü davranışlarını açıklayan bir ifadedir. Teorem, Karl Theodor Wilhelm Weierstrass ve Felice Casorati'ye atfen isimlendirilmiştir.

Matematiğin bir alt dalı olan karmaşık analizde, holomorfluk bölgesi, üzerinde tanımlı olan holomorf fonksiyolardan en az bir tanesinin daha büyük bir bölgeye holomorf özelliğini koruyarak devam ettirelemediği bölgelere verilen addır. Karmaşık düzlemdeki açık kümelerin hepsi holomorfluk bölgesidir. Ancak, karmaşık düzlemde geçerli olan bu sonucun dengi bir sonuç yüksek boyutlu uzayda herhangi bir bölge için geçerli değildir. Bu yüzden, holomorfluk bölgelerin belirleyici özelliklerini bulmak yirminci yüzyılın ilk yarısında çok değişkenli karmaşık analizde en yoğun çalışılmış konulardan birisi olmuştur. Bu farklılığı ilk defa Fritz Hartogs göz önüne sermiştir ve sonuç en genel haliyle Hartogs devam (genişleme) teoremi olarak bilinmektedir.

Matematikte, çok değişkenli karmaşık analiz ya da çok boyutlu karmaşık analiz, karmaşık koordinat uzayı de ya da bu uzayın altkümeleri üzerinde tanımlı ve karmaşık değer alan fonksiyonların teorisi; yani, birden fazla karmaşık değişkenli fonksiyonların teorisidir.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde Hartogs teoremi, birden fazla karmaşık değişkenle tanımlı holomorf fonksiyonların her bir karmaşık değişkene göre ayrı ayrı holomorf olmasının fonksiyonun sürekli olduğunu verdiğini ifade eden bir sonuçtur. Başka bir deyişle, eğer her için değişkeninde holomorf ise, sürekli bir fonksiyondur. Teorem, Friedrich Hartogs'un adını taşımaktadır.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde bir analitik çokyüzlü kompleks uzay Cn'de sonlu sayıda holomorf fonksiyonlar aracılığıyla üretilen bir bölgedir. Analitik çokyüzlüler, özel geometrileri ve belki de çoğunlukla çokyüzlüyü oluşturan fonksiyonların sahip olduğu analitik özellikleri nedeniyle ilgi çekicidir.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde Bergman-Weil formülü, çok değişkenli holomorf fonksiyonların integral temsillerinden biridir. Bergman-Weil formülü aynı zamanda Cauchy integral formülünü birde fazla karmaşık boyuta genelleştirir. Stefan Bergman ve André Weil tarafından literatüre sokulmuştur.