İçeriğe atla

Harmonik fonksiyon

Halka üzerine tanımlanmış bir harmonik fonksiyon.

Matematiğin matematiksel fizik alanında ve rassal süreçler teorisinde bir harmonik fonksiyon, Rn'nin U gibi açık bir kümesi üzerinde f : UR şeklinde tanımlı, Laplace denklemini, yani

denklemini sağlayan iki kere türevlenebilir bir fonksiyondur. Bu denklem aynı zamanda

veya

olarak da yazılmaktadır. Bunun haricinde bariz bir şekilde daha zayıf olan bir tanım daha vardır. Aslında, bir fonksiyon ancak ve ancak zayıf harmonikse, harmoniktir.

Harmonik fonksiyonlar aynı zamanda Laplace-de Rham operatörü kullanılarak herhangi bir Riemann manifoldunda da tanımlanabilirler. Bu bağlamda, bir fonksiyonsa eğer ise harmonik denilir.

denklemini sağlayan ve olan bir fonksiyona altharmonik adı verilir.

Örnekler

İki değişkenli harmonik fonksiyon örnekleri şunlardır:

f(x1, x2) = ln(x12 + x22)
fonksiyonu (yani çizgi yükü nedeniyle oluşan elektrik potansiyeli ve uzun silindirik kütle nedeniyle oluşan yerçekimi potansiyeli)
  • f(x1, x2) = exp(x1)sin(x2).

n değişkenli harmonik fonksiyon örnekleri şunlardır:

  • Rn 'nin tümündeki sabit, doğrusal ve afin fonksiyonları (örneğin, bir kapasitör levhalarının arasındaki elektrik potansiyeli ve bir tablanın yerçekimi potansiyeli)
  • n ≥ 2 için, Rn \ {0} üzerindeki f(x1,...,xn) = (x12 + ... + xn2)1 -n/2 fonksiyonu

Üç değişkenli harmonik fonkisyonların örnekleri alınarak aşağıdaki tabloda verilmiştir. Harmonik fonksiyonlar tekillikleri tarafından belirlenirler. Harmonik fonksiyonların tekil noktaları aşağıda elektrostatik terminolojisi kullanılarak "yük" ve "yük yoğunluğu" olarak açıklanmıştır ve böylece karşılık gelen harmonik fonksiyon bu yük dağılımlarından dolayı elektrostatik potansiyeline oranlı olacaktır. Aşağıdaki her fonksiyon bir sabit ile çarpıldığında, döndürüldüğünde ve/veya fonksiyona bir sabit eklendiğinde yine başka bir harmonik fonksiyon verecektir. Her fonksiyonun tersi (burada ters, görüntüler metodu anlamında kullanılmıştır) küresel "ayna"da orijinal tekilliklerin görüntüsü olan tekilliklere sahip başka bir harmonik fonksiyonu verecektir.

FonksiyonTekillik
Orijindeki birim nokta yükü
Orijindeki x-yönlü dipol
Tüm z-ekseni üzerinde birim yük yoğunluğunun doğrusu
Negatif z-ekseni üzerinde birim yük yoğunluğunun doğrusu
Tüm z-ekseni üzerinde x-yönlü dipoller doğrusu
Negatif z-ekseni üzerinde x-yönlü dipoller doğrusu

Notlar

Açık bir U kümesi üzerindeki harmonik fonksiyonlar kümesi Laplace operatörü Δ'nın çekirdeği olarak düşünülebilir ve bu yüzden R üzerinde bir vektör uzayıdır: Harmonik fonksiyonların toplamları, farkları ve bir katsayıyla çarpımları yine harmonik fonksiyondur.

f eğer U üzerinde harmonikse, o zaman f 'nin bütün kısmi türevleri yine U üzerinde harmoniktir. Laplace operatörü Δ ve kısmi türev operatörü bu fonksiyonlar sınıfında değişmeli olurlar.

Değişik yollarla, harmonik fonksiyonlar holomorf fonksiyonların gerçel analoglarıdır. Bütün harmonik fonksiyonlar analitiktir; yani yerel olarak kuvvet serileri olarak ifade edilebilirler. Bu, Laplasyen'in de büyük bir örneği olduğu eliptik operatörlerin genel bir gerçeğidir.

Yakınsak bir harmonik fonksiyonlar dizisinin düzgün limiti yine harmoniktir. Bu doğrudur çünkü ortalama değer özelliğini sağlayan sürekli herhangi bir fonksiyon harmoniktir. (, 0) × R üzerinde şeklinde tanımlanmış dizi ele alınsın. Bu dizi harmoniktir ve sıfır fonksiyonuna düzgün bir şekilde yakınsar. Bununla birlikte, kısmi türevler sıfır fonksiyonuna (yani sıfır fonksiyonunun türevi olan sıfır fonksiyonuna) düzgün bir şekilde yakınsamaz. Bu örnek, limitin harmonik olduğunu tartışırken ortalama değer özelliğini ve sürekliliği göz önüne almanın önemini göstermektedir.

Karmaşık fonksiyon teorisiyle bağlantıları

Holomorf herhangi bir fonksiyonun gerçel ve sanal kısmı R2 üzerinde harmonik fonksiyonlar verecektir. Tersine, R2 'deki bir bölgede u gibi harmonik fonksiyonu alıp u 'nun v harmonik eşleniğine götüren ve u+iv 'nin holomorf olduğu bir operatör mevcuttur. v burada gerçel bir sabite kadar iyi tanımlıdır. Bu, özellikle Hilbert dönüşümünde iyi bilinen bir gerçektir. Ayrıca, tekil integral operatörleri ile bağlantılı olarak matematiksel analizde de basit bir örnektir. Geometrik olarak, u ve v 'nin, temelde yatan holomorf fonksiyonun sıfırların uzağında dik yörüngeye sahip olmak bağlamında ilişkileri vardır; u ve v 'nin sabit olduğu kontürler birbirlerini dik açı ile keserler. Bu bağlamda, u potansiyel fonksiyon olursa ve v akış fonksiyonu olursa, o zaman u+iv de karmaşık potansiyel olur.

Harmonik fonksiyonların özellikleri

Harmonik fonksiyonların bazı önemli özellikleri Laplace denkleminden çıkarılabilir.

Harmonik fonksiyonlar için düzgünlük teoremi

Harmonik fonksiyonlar sonsuz kere türevlenebilirler. Aslında, harmonik fonksiyonlar gerçel analitiktir.

Maksimum ilkesi

Harmonik fonksiyonlar şu maksimum ilkesini sağlarlar: Eğer K, U 'nun tıkız bir kümesiyse, o zaman f 'nin K 'ye olan sınırlaması maksimum ve minimum değerlerini K 'nin sınırı üzerinde alır. U bağlantılı olursa yukarıdaki ifade f 'nin yerel maksimum veya minimuma sahip olamayacağı anlamına gelir (burada f sabit olmayacak şekilde düşünülmüştür). Benzer özellikler altharmonik fonksiyonlar için de gösterilebilir.

Ortalama değer özelliği

B(x,r), U içinde tamamen yer alan, x merkezli ve r yarıçaplı bir topsa, o zaman f harmonik fonksiyonunun merkezdeki değeri yani f(x), f 'nin topun yüzeyinde aldığı değerlerin ortalama değeriyle verilir. Bu ortalama değer ayrıca f 'nin topun içindeki değerlerinin ortalamasına da eşittir. Başka bir deyişle, n boyutta , birim kürenin yüzey alanı ise

Liouville teoremi

Eğer harmonik bir f fonksiyonu, alttan veya üstten sınırlı bir şekilde Rn 'de tanımlı ise, o zaman f sabittir (Karmaşık değişkenli fonksiyonların Liouville teoremiyle karşılaştırınız).

Genelleştirmeler

Harmonik fonksiyonların genelleştirmelerinden birisi Riemann manifoldları üzerindeki harmonik formlardır ve kohomoloji ile ilgilidir. Ayrıca, vektör değerli harmonik fonksiyonları veya genelleştirilmiş Dirichlet enerji fonksiyonelinin kritik noktaları olan iki Riemann manifoldunun harmonik gönderimlerini de tanımlamak mümkündür (bu harmonik fonksiyonları özel bir durum olarak içerir, Dirichlet ilkesi olarak bilinir). Bu tür harmonik gönderimler minimal yüzeyler teorisinde ortaya çıkmaktadır. Mesela, R 'den bir Riemann manifolduna bir gönderim olan bir eğri, ancak ve ancak jeodeziyse harmonik gönderimdir.

Ayrıca bakınız

Kaynakça

  • L.C. Evans, 1998. Partial Differential Equations. American Mathematical Society.
  • D. Gilbarg, N. Trudinger Elliptic Partial Differential Equations of Second Order. ISBN 3-540-41160-7.
  • Q. Han, F. Lin, 2000, Elliptic Partial Differential Equations, American Mathematical Society

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Kısmi türev</span>

Kısmi türev çok değişkenli bir işlevin(fonksiyon), sadece ilgili değişkeni sabit değilken alınan türevdir. Bu tarz türevleri içeren denklemlere kısmi diferansiyel denklem denir.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

<span class="mw-page-title-main">Cauchy integral formülü</span>

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

<span class="mw-page-title-main">Karmaşık düzlem</span>

Matematikte karmaşık düzlem, gerçel eksen ve ona dik olan sanal eksen tarafından oluşturulmuş, karmaşık sayıların geometrik bir gösterimidir. Karmaşık sayının gerçel kısmının x-ekseni boyuncaki yer değiştirmeyle, sanal kısmının ise y-eksenindeki yer değiştirmeyle temsil edildiği değiştirilmiş bir Kartezyen düzlem olarak düşünülebilir.

Karmaşık analizde, bir kaldırılabilir tekillik veya daha düzgün bir söylemle, bir holomorf fonksiyonun kaldırılabilir tekilliği, fonksiyonun görünüşte holomorf olmadığı; ancak daha yakın bir incelemeden sonra fonksiyonun tanım kümesinin bu tekilliği de içerecek şekilde genişletilebileceği bir noktadır.

<span class="mw-page-title-main">Açıkorur gönderim</span>

Matematikte açıkorur gönderim ya da açıkorur dönüşüm tanımlı olduğu kümenin her noktasında yerel olarak açıları koruyan bir fonksiyona verilen addır. Bu tanımı haliyle, açıkorur gönderimlerin her zaman uzunlukları koruması ya da yönleri koruması beklenmez.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Kuvvet serisi</span>

Matematikte kuvvet serisi

Matematiğin bir alt dalı olan karmaşık analizde Hadamard üç çember teoremi veya sadece üç çember teoremi holomorf fonksiyonların çember üzerindeki maksimum değerleriyle ilgili bir sonuçtur.

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Matematikte dördey analizi ya da kuaternion analizi dördey değerli fonksiyonları inceleyen bir matematik alanıdır. Matematikte başka bir isim olarak dördey değerli fonksiyonların teorisi olarak da adlandırılabilir.

Holomorf fonksiyonlar karmaşık analizin temel çalışma araçlarından biridir. Bu fonksiyonlar karmaşık düzlemin yani C'nin açık bir altkümesinde tanımlı, bu altkümedeki her noktada karmaşık anlamda türevli ve aldığı değerler yine C içinde olan fonksiyonlardır.

Matematikte, çok değişkenli karmaşık analiz ya da çok boyutlu karmaşık analiz, karmaşık koordinat uzayı de ya da bu uzayın altkümeleri üzerinde tanımlı ve karmaşık değer alan fonksiyonların teorisi; yani, birden fazla karmaşık değişkenli fonksiyonların teorisidir.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde Hartogs teoremi, birden fazla karmaşık değişkenle tanımlı holomorf fonksiyonların her bir karmaşık değişkene göre ayrı ayrı holomorf olmasının fonksiyonun sürekli olduğunu verdiğini ifade eden bir sonuçtur. Başka bir deyişle, eğer her için değişkeninde holomorf ise, sürekli bir fonksiyondur. Teorem, Friedrich Hartogs'un adını taşımaktadır.