İçeriğe atla

Hans Christian Ørsted

Hans Christian Ørsted
Doğum14 Ağustos 1777
Rudkøbing, Danimarka
Ölüm9 Mart 1851 (73 yaşında)
Kopenhag, Danimarka
MilliyetDanimarkalı
ÖdüllerCopley Madalyası (1820)
Kariyeri
DalıFizik, kimya
Çalıştığı kurumlarKopenhag Üniversitesi, Danimarka Teknik Üniversitesi (Kurucu ve Müdür)
EtkilendikleriImmanuel Kant
İmza

Hans Christian Ørsted (14 Ağustos 1777 – 9 Mart 1851), elektrik akımlarının manyetik alan oluşturduğunu keşfeden Danimarkalı fizikçi ve kimyager.

Immanuel Kant'ın düşüncelerinden etkilenmiştir. Elektromanyetizma olarak bilinen kavramı, elektrik ile manyetizma arasındaki ilişkiyi bulmasıyla ün kazanmıştır.

1819'da, bir derste Volta piliyle deney yaparken elektrik devresinin açılma ve kapanması ile yakında bulunan pusulanın iğnesinin saptığını görerek araştırmasını bu yönde geliştirince bir mıknatısın yanındaki telin içinden akım geçirildiğinde mıknatısın teli hareket ettirdiğini gözlemiş. Böylece elektrik ile manyetizma arasındaki ilişki kanıtlanmıştır. Bir telin içinden akım geçirildiğinde elektrik akımının telin çevresinde bir manyetik alan oluşturduğu anlaşıldı. Oersted'in yaptığı deneylerin sonuçlarının 1820 yılında yayınlanması, bilim dünyasında büyük yankılar yarattı.

İlk Yılları ve çalışmaları

Ørsted 1777'de Rudkøbing'de doğdu. Küçük bir çocukken yerel eczanenin sahibi olan babası için çalışırken bilime ilgi duydu.[1] O ve erkek kardeşi Anders, erken eğitimlerinin çoğunu evde kendi kendine çalışma yoluyla aldılar ve her iki kardeşin de akademik olarak üstün olduğu Kopenhag Üniversitesi'ne giriş sınavlarına girmek için 1793'te Kopenhag'a gittiler. 1796'da Ørsted hem estetik hem de fizik alanındaki makaleleri için onur ödülüne layık görüldü. 1799 yılında Kant'ın The Architectonics of Natural Metaphysics adlı eserlerinden yola çıkarak doktora derecesini aldı.

1800 yılında Alessandro Volta, Ørsted'e elektriğin doğasını araştırması ve ilk elektrik deneylerini gerçekleştirmesi için ilham veren voltaik yığını icat ettiğini bildirdi. 1801'de Ørsted, Avrupa'yı dolaşarak üç yıl geçirmesini sağlayan bir seyahat bursu ve devlet bursu aldı. Berlin ve Paris dahil olmak üzere kıtadaki bilim merkezlerini gezdi.[2]

Almanya'da Ørsted, elektrik ve manyetizma arasında bir bağlantı olduğuna inanan bir fizikçi olan Johann Wilhelm Ritter ile tanıştı. Bu fikir Ørsted'e doğanın birliği ile ilgili Kantçı düşünceye sahip olduğu için mantıklı geldi.[1][3] Ørsted'in Ritter ile yaptığı konuşmalar onu fizik çalışmasına çekti. 1806'da Kopenhag Üniversitesi'nde profesör oldu ve elektrik akımları ve akustik üzerine araştırmalarına devam etti. Üniversite onun rehberliğinde kapsamlı bir fizik ve kimya programı geliştirdi ve yeni laboratuvarlar kurdu.

Ørsted, 1806 sonbaharında William Christopher Zeise'i ailesinin evinde karşıladı. Zeise'a ders asistanı olarak bir görev verdi ve genç kimyacıyı vesayeti altına aldı. Ørsted 1812'de Videnskaben om Naturens Almindelige Love ve Første Indledning til den Almindelige Naturlære'yi (1811) yayınladıktan sonra Almanya ve Fransa'yı tekrar ziyaret etti.

Ørsted, düşünce deneyini açıkça tanımlayan ve adlandıran ilk modern düşünürdü. 1812 dolaylarında Latince-Almanca terim olan Gedankenexperiment'i ve 1820'de Almanca Gedankenversuch terimini kullandı.

Elektromanyetizma

Hans Christian Ørsted

1820'de Ørsted, pusula iğnesinin yakındaki bir elektrik akımı tarafından manyetik kuzeyden saptırıldığını ve elektrik ile manyetizma arasında doğrudan bir ilişki olduğunu doğrulayan keşfini yayınladı.[4] Aslında 1818'den beri elektrik ve manyetizma arasında bir bağlantı arıyordu, ancak elde ettiği sonuçlardan oldukça kafası karışmıştı.[5][6]

İlk yorumu, manyetik etkilerin, ışık ve ısı gibi elektrik akımı taşıyan bir telin her tarafından yayıldığı şeklindeydi. Üç ay sonra, daha yoğun araştırmalara başladı ve kısa süre sonra bulgularını yayınladı ve bir elektrik akımının bir telin içinden akarken dairesel bir manyetik alan ürettiğini gösterdi.[7] Keşfi için, Royal Society of London 1820'de Ørsted'i Copley Madalyası ile ödüllendirdi ve Fransız Akademisi ona 3.000 frank verdi.

İlerleyen Dönemleri

Ørsted, 1822'de İsveç Kraliyet Bilimler Akademisi'nin yabancı üyesi ve 1849'da Amerikan Sanat ve Bilim Akademisi'nin Yabancı Onursal Üyesi seçildi.[8]

Doğal bilimlerle ilgili bilgileri yaymak için bir topluluk olan Naturlærens Udbredelse (SNU) için Selskabet'i 1824'te kurdu. Aynı zamanda, daha sonra Danimarka Meteoroloji Enstitüsü ve Danimarka Patent ve Ticari Marka Ofisi olan önceki kuruluşların da kurucusuydu. 1829'da Ørsted, daha sonra Danimarka Teknik Üniversitesi (DTU) olarak yeniden adlandırılan Den Polytekniske Læreanstalt'ı ('İleri Teknoloji Koleji') kurdu.

Mezarı

Ørsted, 1825 yılında ilk defa neredeyse saf halde alüminyum üreterek kimyaya önemli bir katkı yaptı.[9] Bununla birlikte, elektroliz işlemlerini kullanarak onu izole etme girişimleri başarısız oldu. En yakın geldiği alüminyum-demir alaşımıydı.[10] Ørsted, elementi alüminyum klorür indirgeme yoluyla izole eden ilk kişiydi. Çıkardığı alüminyum alaşımı hala safsızlıklar içermesine rağmen, metalin keşfi ile ödüllendirildi. Çalışması, 22 Ekim 1827'de alüminyum tozu ve 1845'te katılaştırılmış erimiş alüminyum topları elde eden Friedrich Wöhler tarafından daha da geliştirildi. Wöhler, metalin ilk saf halde izolasyonunu yaptı.[11]

Ørsted 1851'de Kopenhag'da 73 yaşında öldü ve Assistens Mezarlığı'na gömüldü.

Ayrıca bakınız

Kaynakça

  1. ^ a b Ørsted, Hans ChristianHG (31 Aralık 1998). "Selected Scientific Works of Hans Christian Orsted". doi:10.1515/9781400864850. 
  2. ^ Krabbe, Niels (27 Mart 2013). "Fra Beethovens skrivepult i Wien til magasinerne i København". Magasin fra Det Kongelige Bibliotek. 26 (4): 3-21. doi:10.7146/mag.v26i4.66775. ISSN 1904-4348. 
  3. ^ Brain, Robert Michael; Cohen, Robert S.; Knudsen, Ole, (Ed.) (2007). "Hans Christian Ørsted And The Romantic Legacy In Science". doi:10.1007/978-1-4020-2987-5. 
  4. ^ "History of the Electric Telegraph". Scientific American. 18 (450supp): 7175-7178. 16 Ağustos 1884. doi:10.1038/scientificamerican08161884-7175supp. ISSN 0036-8733. 
  5. ^ Volta and the history of electricity. Fabio Bevilacqua. Milano: Hoepfli Ed. 2003. ISBN 88-203-3284-1. OCLC 907794670. 
  6. ^ Fahie, J.J. (1918). "Galileo and magnetism: a study in loadstones". Journal of the Institution of Electrical Engineers. 56 (273): 246-249. doi:10.1049/jiee-1.1918.0020. ISSN 2054-0612. 
  7. ^ Ørsted, Hans Christian (1820). Experimenta circa effectum conflictus electrici in acum magneticam. Typis Schultzianis. 
  8. ^ "Erratum: Remarks by Newly Elected Members". Bulletin of the American Academy of Arts and Sciences. 52 (3). 1999. doi:10.2307/3824125. ISSN 0002-712X. 
  9. ^ Jacobson; Jerichau; Oersted (8 Kasım 2004). "Auszug aus der „Oversigt over det Kongelige danske Videnskabernes Selskab's Forhandlinger og dets Medlemmers Arbeider i Aaret 1840."︁". Journal für Praktische Chemie. 23 (1): 467-475. doi:10.1002/prac.18410230165. ISSN 0021-8383. 
  10. ^ Kvande, Halvor (2008). "Two hundred years of aluminum ... or is it aluminium?". JOM (İngilizce). 60 (8): 23-24. doi:10.1007/s11837-008-0102-3. ISSN 1047-4838. 
  11. ^ Gershinkova, D.A.; Spirin, A.V.; Chestnoy, S.Yu. (2018). "CLIMATIC RISKS FOR ALUMINIUM PRODUCTION IN RUSSIA (THE CASE STUDY OF THE UNITED COMPANY RUSAL)". Fundamental and Applied Climatology. 4: 19-38. doi:10.21513/2410-8758-2018-4-19-38. ISSN 2410-8758. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Manyetik alan</span> elektrik yüklerinin bağıl hareketteki manyetik etkisini tanımlayan vektör alanı

Mıknatıssal veya manyetik alan, bir mıknatısın mıknatıssal özelliklerini gösterebildiği alandır. Mıknatısın çevresinde oluşan çizgilere de, mıknatısın o bölgede oluşturduğu manyetik alan çizgileri denir. Manyetik alan çizgilerinin yönü kuzeyden (N) güneye (S) doğrudur. Manyetik alan hareket eden elektrik yükleri tarafından, zamanla değişen elektrik alanlardan veya temel parçacıklar tarafından içsel olarak üretilir. Manyetik alan vektörel bir büyüklüktür. Yani herhangi bir noktada yönü ve şiddeti ile tanımlanır. Manyetik alan B harfiyle temsil edilir. SI birimi Sırp bilim insanı Nikola Tesla'nın soyadı Tesladır. Manyetik alan Lorentz kuvveti kullanılarak ölçüldüğü için birimi coulumb-metre/saniye başına Newtondur. Saniye başına coulomba bir amper dendiği için T=N(Am)-1 olarak da geçer. Tesla günlük olaylar için çok büyük bir birim olduğundan pratikte, gauss (G) kullanılmaktadır. 1 T=104 G

<span class="mw-page-title-main">Elektrik</span> elektrik yükünün varlığı ve akışı ile ilgili fiziksel olaylar

Elektrik, elektrik yüklerinin akışına dayanan bir dizi fiziksel olaya verilen isimdir. Elektrik sözcüğü Türkçeye Fransızcadan geçmiştir. Elektriğin Türkçe eş anlamlısı çıngı sözcüğüdür. Ayrıca Anadolu ağızlarında elektrik anlamında yaldırayık sözcüğü tespit edilmiştir. Elektrik, pek çok farklı şekillerde var olabilir. Örneğin, yıldırımlar, durgun elektrik, elektromanyetik indüksiyon ve elektrik akımı gibi. Ek olarak, elektriğin elektromanyetik radyasyon, radyo dalgaları gibi oluşumları olduğu bilinmektedir.

<span class="mw-page-title-main">Wilhelm Röntgen</span>

Wilhelm Conrad Röntgen, Alman fizikçi. Nobel Fizik Ödülü sahibi olup, Röntgen ışınlarını bulmuştur.

<span class="mw-page-title-main">Elektromanyetizma</span> elektrikle yüklü parçacıklar arasındaki etkileşime neden olan fiziksel kuvvet

Elektromanyetizma, elektrikle yüklü parçacıklar arasındaki etkileşime neden olan fiziksel kuvvet'tir. Bu etkileşimin gerçekleştiği alanlar, elektromanyetik alan olarak tanımlanır. Doğadaki dört temel kuvvetten biri, elektromanyetizmadır. Diğer üçü; güçlü etkileşim, zayıf etkileşim ve kütleçekim kuvvetidir.

<span class="mw-page-title-main">William Gilbert (fizikçi)</span> İngiliz bilim insanı (1540-1603)

William Gilbert ; İngiliz doktor, fizikçi ve doğa filozofu. William Gilbert yaygın olan Aristotelesçi felsefeseyi ve üniversite eğitiminin skolastik metodunu tutkuyla reddetmiştir. Bugün, büyük ölçüde De Magnete (1600) isimli kitabıyla hatırlanmakta ve elektrik teriminin ilk kullanıcılarından biri olarak bilinmektedir. Bazıları tarafından elektrik mühendisliğinin veya elektrik ve manyetizmanın babası olarak düşünülür.

<span class="mw-page-title-main">Michael Faraday</span> İngiliz bilim insanı (1791–1867)

Michael Faraday, elektromanyetizma ve elektrokimyaya katkılarıyla tanınan, İngiliz kimya ve fizik bilgini.

<span class="mw-page-title-main">Andre Marie Ampere</span> Fransız fizikçi ve matematikçi (1775–1836)

André Marie Ampère, Fransız fizikçi ve matematikçi. Elektromanyetizmayı ilk bulan kişiler arasında gösterilir. Ayrıca solenoid ve elektrikli telgraf gibi sayısız uygulamanın mucididir. Bir otodidakt olarak Ampère, Fransız Bilimler Akademisi üyesiydi ve Ecole Polytechnique ile Collège de France'da profesördü.

<span class="mw-page-title-main">Elektrik üreteci</span> Mekanik enerjiyi elektrik enerjisine dönüştüren aygıt

Elektrik üretiminde jeneratör, harekete dayalı gücü veya yakıta dayalı gücü harici bir devrede kullanılmak üzere elektrik gücüne dönüştüren bir cihazdır. Mekanik enerji kaynakları arasında buhar türbinleri, gaz türbinleri, su türbinleri, içten yanmalı motorlar, rüzgar türbinleri ve hatta el krankları bulunur. İlk elektromanyetik jeneratör olan Faraday diski, 1831 yılında İngiliz bilim adamı Michael Faraday tarafından icat edildi. Jeneratörler elektrik şebekeleri için neredeyse tüm gücü sağlar.

<span class="mw-page-title-main">Manyetizma</span> class of physical phenomena

Manyetizma, manyetik alan tarafından oluşturulan fiziksel bir olgudur. Elektrik akımı ya da temel bir parçacık herhangi bir manyetik alan yaratabilir. Bu manyetik alan aynı zamanda diğer akımları ve manyetik momentleri de etkiler. Manyetik alan her maddeyi belli bir ölçüde etkiler. Kalıcı mıknatıslar üzerindeki etkisi en çok bilinen bir durumdur. Kalıcı mıknatıslar ferromanyetizmadan dolayı kalıcı manyetik momente sahiptir. Ferromanyetizma kelimesinde yer alan “ferro” ön eki demir elementinin isminden türetilmiştir. Çünkü kalıcı mıknatıs ilk olarak “manyetit – Fe3O4” adı verilen demir elementinin doğal bir formu olarak gözlemlenmiştir. Çoğu madde kalıcı momente sahip değildir. Bazıları manyetik alan tarafından çekilirken (paramanyetizm); bazıları manyetik alan tarafından itilir (diyamanyetizm). Bazıları ise herhangi bir manyetik alana maruz kaldığında daha karmaşık durumlara sevk olur. Manyetik alan tarafından ihmal edilecek ölçüde etkilenen maddeler ise manyetik olmayan maddeler olarak bilinir. Bunlar bakır, alüminyum, gazlar ve plastiktir. Ayrıca, saf oksijen sıvı hale kadar soğutulduğunda manyetik özellikler gösterir.

<span class="mw-page-title-main">Elektrik mühendisliği tarihi</span>

Elektrik mühendisliği tarihi, elektrik kullanımının günümüze gelirken geçirdiği dönüşümleri, yaşam ve teknolojinin gelişimine etkilerini ve bu gelişime katkıda bulunan bilim insanlarını anlatan tarihtir.

<span class="mw-page-title-main">Galvanometre</span>

Galvanometre, elektrik akımındaki değişimin manyetik alan oluşturması prensibiyle çalışan bir tür test cihazıdır.

Elektromanyetik indüksiyon, değişen bir alana maruz kalmış bir iletkenin üzerindeki potansiyel fark (voltaj) üretimidir.

Deneysel fizik, evren hakkında bilgi toplamak için fiziksel olguları gözlemleyen fizik disiplinleri ve alt disiplinleridir. Yöntemleri, Cavendish deneyi gibi basit deney ve gözlemlerden, Büyük Hadron Çarpıştırıcısı gibi komplike deneylere kadar disiplinleri arasında farklılıklar gösterir.

<span class="mw-page-title-main">Eddy akımı</span>

Eddy akımı Faraday’ın indüksiyon kanunundan dolayı, manyetik alan değiştiğinde iletkenlerin içerisinde oluşan çembersel elektrik akımıdır. Eddy akımı kapalı bir döngünün içerisinde, manyetik alana dik düzlemlerde akar. Sabit bir iletkenin içerisinde; AC elektromıknatıs veya trafo kullanılarak oluşturulmuş, zamana bağlı değişen bir manyetik alan ile veya sabit bir mıknatısa göre hareketli bir iletken ile oluşturulabilirler. Belirli bir çerçeve içerisinde oluşan akımın büyüklüğü; manyetik alanın büyüklüğü, çerçevenin alanı, çerçevenin içerisinde oluşmuş manyetik akının anlık değişim miktarı ile doğru, üzerinde aktığı maddenin iç direnciyle ters orantılıdır.

Elektromanyetik kuramın tarihi özellikle aydınlatma alanındaki atmosferik elektrik ile ilişkilendirilmiş eski ölçümlerle başlar. İnsanlar elektrik hakkında çok az bilgiye sahipti ve bilimsel olarak bu doğa olaylarını açıklayamıyorlardı. 19. yüzyılda elektrik kuramının tarihi ve manyetizma kuramının tarihi kesişti. Elektriğin hareket halinde olduğu her yerde manyetizmanın varlığından da söz edilebileceği için elektriğin manyetizma ile birlikte ele alınması gerektiği çok açıktı. Manyetizma, manyetik indüksiyon düşüncesi geliştirilmeden tam olarak açıklanamadı. Elektrik, elektrik yük düşüncesi geliştirilmeden tam olarak açıklanmadı.

Elektromanyetik kuvvetlerin insan anlayışının zaman çizelgesi olduğu elektromanyetizma zaman çizelgesi, iki bin yıl öncesine dayanmaktadır. Bu çizelge, elektromanyetizma, ilgili teoriler, teknoloji ve olayların tarihinin içinde oluşumlarını listeler.

Oersted, CGS birim sisteminde kullanılan bir birimdir. Birim adını elektrik akımındaki değişimin manyetik alan ürettiğini bulan Danimarkalı bilim insanı Hans Christian Ørsted'ten almıştır.

<span class="mw-page-title-main">Alüminyumun tarihi</span>

Alüminyum : metal, doğal formda çok nadirdir ve onu cevherlerden arıtma işlemi karmaşıktır, bu nedenle insanlık tarihinin çoğu için bilinmiyordu. Bununla birlikte, bileşik şap, MÖ 5. yüzyıldan beri biliniyor ve eskilerin boyama için yaygın olarak kullanılıyordu. Orta Çağ boyunca, boyama için kullanılması onu uluslararası ticaretin bir malı haline getirdi. Rönesans bilim adamları şapın yeni bir toprağın tuzu olduğuna inanıyorlardı; Aydınlanma Çağı'nda bu toprağın, Alüminyumun yeni bir metalin oksidi olduğu tespit edildi. Bu metalin keşfi, çalışmaları Alman kimyager Friedrich Wöhler tarafından genişletilen Danimarkalı fizikçi Hans Christian Ørsted tarafından 1825'te duyuruldu.

<span class="mw-page-title-main">Rudkøbing</span> Danimarkanın Güney bölgesi, Langeland belediyesine bağlı yerleşim yeri

Rudkøbing, Danimarka'da bir pazar şehridir. Langeland adasındaki en büyük kasaba ve Langeland Belediyesi'nin belediye merkezidir. Nüfusu 4,565.

<span class="mw-page-title-main">Johann Wilhelm Ritter</span>

Johann Wilhelm Ritter Alman kimyager, fizikçi ve filozof. Silezya'da bulunan Samitz'de (Zamienice) doğdu ve Münih'de öldü. 1801'de Gümüş klorür ile yaptığı bir deney sırasında 1801'de ultraviyole ışığını keşfetti. "Romantik Dönemin en parlak fizikçisi" olarak tanımlanan Ritter, kendi döneminde tartışmalı bir figürdü. Bilimsel çalışmalarının değeri, ancak ölümünden sonra tamamen anlaşılabilmiştir.