İçeriğe atla

Hamilton yolu

8x8 ızgara graf Hamilton yolları üç örneği

Hamilton Yolu, yönlü veya yönsüz bir grafta Hamilton yolu veya Hamilton devresinin olup olmadığının kararının verilmesinin problemidir.

Yönlü ve yönsüz Hamilton devresi problemi Karp’ın 21 NP-tam probleminden ikisidir.[1] Garey ve Johnson, 1974 senesinde düzlemsel grafikler için yönlü hamilton devresi probleminin ve kübik düzlemsel grafikler için yönsüz hamilton devresi probleminin değişmeden NP-tam kalacağını kısaca göstermişlerdir.[2]

Hamilton yolları, yaygın olarak Gezgin satıcı problemi'nin çözümü için kullanılmaktadır.

İddia

Bir graf’taki Hamilton yollarının bulunması NP-tam bir işlemdir.

Çözüm fikri

Hampath’in NP bir problem olduğu zaten bilinmektedir.[3]

3SAT HAMPATH indirgemesinin doğrulanması durumunda iddia ispatlanmış olacaktır.

İspat

Her 3cnf formülü için, s ve t düğümleri ile yönlü graf G’nin nasıl oluşturulacağı gösterilecektir.

Eğer şartları sağlıyorsa, s ve t arasında bir hamilton yolu bulunmaktadır.

k adet clause’dan oluşan 3cnf formülü  :

Denklemde yer alan her p, q, r ; xi veya xi’ olmak üzere

’nın l adet değişken içerdiği varsayılacak olursa denklemde yer alan değişkenler : x1 … xl

’nın graf G’ye dönüştürülmesi işleminde; graf G, ’nın içerisindeki değişkenler ve clause’lardan oluşacaktır.

Her değişken xi, aşağıdaki illüstrasyondada olduğu gibi yatayda dizilmiş düğümlerden oluşan elmas şeklindeki bir yapı ile temsil edilecektir. Daha sonra, yatay sırada gözüken düğümlerin sayısı belirlenecektir.


Değişken xi’nin elmas içerisinde tasvir edilmesi


’daki her clase’un tek bir düğüm ile tasvir edilmesi

Aşağıdaki figür, G’nin global yapısını göstermektedir. İllüstrasyon, değişkenlerin clause’lar ile olan ilişkileri haricinde G’nin tüm elemanları ve ilişkilerini göstermektedir.


Graf G’nin Global Yapısı

Ardından, değişkenleri temsil eden elemanlarla clause’ları temsil eden düğümlerin nasıl ilişki içerisinde oldukları gösterilecektir. Yatay sırada 3k+1 adet düğüm ve bunlara ilavaten iki adet başta ve sonda bulunan elmasa dahil düğüm bulunmaktadır. Bu düğümler, her clause için bitişik düğümler oluşturacak şekilde gruplanacak ve bu çiftlerden sonra ekstra ayırıcı bir düğüm bulunacaktır. Tıpkı şekilde de görüldüğü gibi:


Elmas yapısında yer alan yatay düğümler

Eğer değişken xi, clause cj içerisinde yer alıyorsa; i. değişkendeki j. çift ile j. clause ilişki içerisindedir.


Clause cj nin xi yi içermesi durumundaki ilave kenarlar

Eğer xi’, clause cj içerisinde yer alıyorsa; i. değişkendeki j. çift ile j. clause ilişki içerisindedir.

Clause cj nin xi‘ yi içermesi durumundaki ilave kenarlar

Her clause’da her xi veya xi’ nin var oluşuna göre eklenecek kenarlar ile, G’nin yapısı tamamlanmış olacaktır. Yol s’den başlayacak, her elmasa sırasıyla uğrayacak t’de son bulacaktır. Elmasta izlenecek yolun bulunması için, ’yı sağlayan değerlerden belirlenmek üzere yol ya soldan sağa doğru zig-zag yapacak ya da sağdan sola doğru zag-zig yapacaktır. Şayet xi DOĞRU olarak belirlenmişse yol elmas boyunca zig-zag yapacak, YANLIŞ olarak belirlenmişse yol elmas boyunca zag-zig yapacaktır. Her iki ihtimalde takip eden figürde gösterilmiştir.


Elmas boyunca zig-zag veya zag-zig yapılması denklemde şartları sağlayan değerler tarafından belirlenmektedir.

Böylelikle arzu edilen Hamilton yolu oluşturulmuş olur. Geriye gösterilmesi kalan tek şey Hamilton yolunun normal olmak zorunda olduğudur. Normallik sadece bir yol clause’a bir elmastan girip, clause çıkışında farklı bir elmasa gidiyorsa başarısız olacaktır. Tıpkı illüstrasyonda betimlendiği gibi:

Bu Durum Gerçekleşemez

Yol a1’den C’ye gider, ancak aynı elmastaki a2’ye dönmesi gerekirken, farklı bir elmastaki b2’ye döner. Eğer bu durum olursa, ya a2 ya da a3 ayırıcı düğüm olmak zorundadır. Şayet a2 ayırıcı düğüm olsaydı, a2’ye giren kenarlar yalnızca a1 ve a3’ten olurdu. Eğer a3 ayırıcı düğüm olsaydı,a1 ve a2 aynı clause çifti içerisinde yer alırdı. Bundan ötürüde a2’ye giren kenarlar yalnızca a1, a3 ve c’den olabilirdi. Her iki durumda da, yol a2 düğümünü içermezdi. Yol a2’ye c veya a1’den giremez çünkü yol bu düğümlerden başka bir yere gitmektedir. Yol a2’ye a3’ten giremez çünkü a3, a2’nin işaret ettiği tek mevcut düğüm. Bu yüzden, yol a2’den a3 vasıtasıyla çıkmak zorundadır.

İş bu nedenle, hamilton yolu normal olmak zorundadır. Bu indirgeme açık olarak polinomsal zamanda işler ve ispat tamamlanmış olur.

Ayrıca bakınız

Kaynakça

  1. ^ Wikipedia, Karp's 21 NP-complete problems 1 Mayıs 2010 tarihinde Wayback Machine sitesinde arşivlendi.
  2. ^ M. R. Garey, D. S. Johnson. Some simplified NP-complete problems. Proceedings of the sixth annual ACM symposium on Theory of computing, p. 47-63. 1974.
  3. ^ Michael Sipser: "Introduction to the Theory of Computation" Course Technology Press Second Edition, 2005.


İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Çizge teorisi</span> nesneler arasındaki ikili ilişkileri modellemek için kullanılan matematiksel yapılar olan grafiklerin incelenmesi

Graf teorisi, çizge teorisi veya çizit teorisi, grafları inceleyen matematik dalıdır. Graf, düğümler ve bu düğümleri birbirine bağlayan kenarlardan oluşan bir tür ağ yapısıdır. Bir graf, çizge veya çizit, düğümlerden (köşeler) ve bu düğümleri birbirine bağlayan kenarlardan oluşur.

<span class="mw-page-title-main">Kondansatör</span> Ani yük boşalması amacıyla kullanılan devre elemanı

Kondansatör ya da sığaç veya yoğunlaç, elektronların kutuplanıp elektriksel yükü elektrik alanın içerisinde depolayabilme özelliklerinden faydalanılarak bir yalıtkan malzemenin iki metal tabaka arasına yerleştirilmesiyle oluşturulan temel elektrik ve elektronik devre elemanı. Piyasada kapasite, kapasitör, sığaç gibi isimlerle anılan kondansatörler, 18. yüzyılda icat edilip geliştirilmeye başlanmış ve günümüzde teknolojinin ilerlemesinde büyük önemi olan elektrik-elektronik dallarının en vazgeçilmez unsurlarından biri olmuştur. Elektrik yükü depolama, reaktif güç kontrolü, bilgi kaybı engelleme, AC/DC arasında dönüşüm yapmada kullanılır ve tüm entegre elektronik devrelerin vazgeçilmez elemanıdır. Kondansatörlerin karakteristikleri olarak;

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

<span class="mw-page-title-main">İndüktans</span>

İndüktans elektromanyetizma ve elektronikte bir indüktörün manyetik alan içerisinde enerji depolama kapasitesidir. İndüktörler, bir devrede akımın değişimiyle orantılı olarak karşı voltaj üretirler. Bu özelliğe, onu karşılıklı indüktanstan ayırmak için, aynı zamanda öz indüksiyon da denir. Karşılıklı indüktans, bir devredeki indüklenen voltajın başka bir devredeki akımın zamana göre değişiminin etkisiyle oluşur.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

3SAT ve KLIK problemleri, Turing makinasından polinom zamanda kararlaştırılabilen NP problemleri arasında yer alır. Bu problemlerin birbirinin cinsine çevrilmesine indirgeme denilir.

Köşe Örtme, bir çizge (graf) içerisindeki tüm kenarların en az sayıda seçilebilecek düğüm ile kapsanabilir olup olmadığının bulunması problemidir. Bu problemin NP sınıfı içerisinde olduğu bilinmektedir. Amaç, bu problemin NP-Tam sınıfında olup olmadığının ispatıdır.

Bilgisayar bilimlerinde, alt küme toplamı problemi karmaşıklık kuramında ve kriptografide önemli yeri olan bir problemdir.

<span class="mw-page-title-main">Dört yüzlü</span>

Geometride tetrahedron veya dört yüzlü, dört üçgen yüzden oluşan bir çokyüzlüdür (polihedron), her köşesinde üç üçgen birleşir. Düzgün dört yüzlü dört üçgenin eşkenar olduğu bir dört yüzlüdür ve Platonik cisimlerden biridir. Dörtyüzlü, dört yüzü olan tek konveks çokyüzlüdür. Tetrahedron isminin sıfat hali "tetrahedral"dır.

Hamilton yolu problemi, Hamilton yolunun çözümü ile ilgili problemdir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

Fizikte -ayrıca yer çekimi için Gauss akı teoremi olarak bilinen- Gauss yer çekimi yasası, Newton'un evrensel çekim yasasına temelde eşdeğer olan fizik yasasıdır. Her ne kadar Yer çekimi için Gauss yasası Newton'un yasasına denk olsa da, pek çok durumda Gauss yer çekimi yasası hesaplama yapmak için Newton'un yasasından çok daha basit ve uygundur.

Rönesans'tan bu yana, her yüzyılda, bir önceki göre daha fazla matematik problemi çözülmüştür. Yine de birçok büyük ve küçük problem çözüme kavuşturulamamıştır. Uzun süredir var olan bir sorunun çözümü için genellikle ödüller verilir ve çözülmemiş sorunların listeleri büyük önem kazanır. Çözülmemiş problemler, aralarında fizik, bilgisayar bilimi, cebir, matematiksel analiz, Kombinatorik, cebirsel geometri, ayrık geometri, Öklid geometrisi, katma ve cebirsel geometri teorileri, çizge teorisi, grup kuramı, modeller kuramı, sayılar teorisi, kümeler kuramı, Ramsey Kuramı, dinamik sistemler, Kısmi diferansiyel denklemler gibi birçok alanda varlığını sürdürmektedir.

Hamilton mekaniği klasik mekaniğin tekrar formüle edilmesiyle geliştirilmiş ve Hamilton olmayan klasik mekanik ile aynı sonuçları öngörmüş bir teoridir. Teoriye daha soyut bir bakış açısı kazandıran Hamilton mekaniği klasik mekaniğe kıyasla farklı bir matematiksel formülasyon kullanmaktadır. Tarihi açıdan önemli bir çalışma olan Hamilton mekaniği ileriki yıllarda istatistiksel mekanik ve kuantum mekaniği konularının da geliştirilmesine önemli katkılarda bulunmuştur.

<span class="mw-page-title-main">Graf (matematik)</span> kenarlarla çiftler halinde bağlanmış köşeler

Matematikte graf ya da çizge, nesne çiftlerinin bir anlamda "ilişkili" olduğu bir dizi nesne kümesini belirleyen bir yapıdır. Nesneler, köşeler adı verilen matematiksel soyutlamalara karşılık gelir ve ilgili düğüm çiftlerinin her birine bir kenar, ayrıt adı verilir. Tipik olarak bir graf, kenarları için çizgiler veya eğriler ile birleştirilen, düğümler için bir nokta veya daire kümesi olarak diyagram şeklinde gösterilir. Graflar ayrık matematikte çalışmanın amaçlarından biridir.