İçeriğe atla

Halka teorisi

Cebirde halka teorisi, toplama ve çarpmanın tanımlandığı ve tamsayılar için tanımlanan işlemlere benzer özelliklere sahip cebirsel yapılar olan halkaların incelenmesidir.[1] Halka teorisi; halkaların yapısını, temsillerini veya farklı dillerde modülleri, özel halka sınıflarını (grup halkaları, bölme halkaları, evrensel zarflama cebirleri) ve homolojik özellikler ve polinom özdeşlikleri gibi uygulamaları inceler.

Notlar

  1. ^ Halka teorisi, rngs çalışmasını da içerebilir..

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Lineer cebir</span> Uzay matematiği

Doğrusal cebir ya da lineer cebir; matematiğin, vektörler (yöney), vektör uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve matrisleri (dizey) inceleyen alanıdır. Vektör uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.

<span class="mw-page-title-main">Kelebek önsavı</span>

Matematikte, Kelebek önsavı veya Zassenhaus önsavı, Hans Zassenhaus adına ithaf edilir, bir grubunun altgrupların kafesinin veya bir modülün altmodullerin kafesinin veya daha genel herhangi moduler kafes için teknik bir sonuçtur.

Eşzamanlılık, ilk olarak analitik psikolog Carl G. Jung tarafından "anlamlı bir şekilde ilişkili görünen ancak nedensel bir bağlantıdan yoksun durumları tanımlamak için" ortaya atılan bir kavramdır. Çağdaş araştırmalarda, eşzamanlılık deneyimleri, kişinin zihnindeki olaylar ile dış dünya arasındaki tesadüflerin nedensel olarak birbiriyle ilgisiz olabileceği, ancak başka bilinmeyen bir bağlantısı olabileceğine dair kişinin öznel deneyimine atıfta bulunur. Jung, bunun insan zihninin sağlıklı, hatta gerekli bir işlevi olduğunu ve psikozda zararlı hale gelebileceğini savunmuştur.

Matematikte Golomb dizisi, Solomon W. Golomb'un ismi verilmiştir, anin dizide n defa tekrar ettiği, a1 = 1 ve ardından gelen, koşulu sağlayan değerlerin oluşturduğu bir azalmayan dizidir. a1 = 1 olması 1 sayısının dizide 1 kere geçeceğini açıklar ve a2 1 olamaz, ama olması gerektiği gibi iki olmalıdır. İlk birkaç değer:

1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12.
<span class="mw-page-title-main">Temsil teorisi</span>

Temsil teorisi soyut cebirdeki cebirsel yapıları, daha somut olan matematiksel nesnelerin dönüşümleri olarak tasvir etmeye çalışan bir matematik dalıdır. Örneğin soyut bir grubunu bir vektör uzayı 'nin eşyapı dönüşüm grubunun() içinde görmeye çalışır. Böyle temsillere doğrusal temsil denir, çünkü bu temsil aslında grubundan genel lineer grup 'ye bir morfizma yazmak demektir. Böyle bir temsil bulmaktaki amaç, grubunu çalışmak için lineer cebir kullanmaktır. Soyut gruplardaki çarpma işlemi, özellikle bir bilgisayar için matris çarpmasından daha zordur. Soyut bir grubun doğrusal temsillerini kullanarak, gruptaki kimi hesaplamaları bilgisayara yaptırmak daha kolay olur.

Gorō Shimura , Princeton Üniversitesi'nde sayı teorisi, otomorfik formlar ve aritmetik geometri alanlarında çalışan Japon matematikçi ve Michael Henry Strater Matematik Fahri Profesörü idi. Abelyen varyetelerin ve Shimura varyetelerinin karmaşık çarpımı teorisini geliştirmesinin yanı sıra, sonuçta Fermat'ın Son Teoreminin kanıtına yol açan Taniyama-Shimura varsayımını ortaya koymasıyla biliniyordu.

<span class="mw-page-title-main">Ernest Vinberg</span> Rus matematikçi (1937-2020)

Ernest Borisovich Vinberg, Sovyet-Rus matematikçi. Vinberg 26 Temmuz 1937'de Moskova'da doğdu. Vinberg Algoritması ile Koecher–Vinberg Teoremini hazırladı.

<span class="mw-page-title-main">Vladimir Arnold</span> Sovyet-Rus matematikçi

Vladimir İgoreviç Arnold Sovyet-Rus matematikçi. En iyi entegre sistemlerin stabilitesi ile ilgili Kolmogorov-Arnold-Moser teoremi ile tanınmasına rağmen, dinamik sistem teorisi, cebir, felaket teorisi, topoloji, cebirsel geometri, sezgisel geometri, diferansiyel denklemler, klasik mekanik dahil olmak üzere birçok alanda önemli katkılarda bulunmuştur., Hidrodinamik ve tekillik teorisi, ADE sınıflandırma problemini ortaya çıkarmak da dahil olmak üzere, ilk ana sonucundan bu yana - 19 yaşında 1957'de Hilbert'in on üçüncü probleminin çözdü. İki yeni matematik dalı kurdu: KAM teorisi ve topolojik Galois teorisi öğrencisi Askold Hovanskiy ile).

<span class="mw-page-title-main">André Weil</span> Fransız matematikçi (1906 – 1998)

André Weil, sayılar teorisi ve cebirsel geometri alanındaki çalışmaları ile tanınan Fransız matematikçidir. Matematiksel Bourbaki grubunun kurucu üyesiydi. Filozof Simone Weil kız kardeşi, yazar Sylvie Weil ise kızıdır.

<span class="mw-page-title-main">Israel Gelfand</span> Sovyet matematikçi (1913 – 2009)

Israel Moyseyovich Gelfand, Yahudi asıllı ünlü bir Sovyet matematikçisiydi. Grup teorisi, temsil teorisi ve fonksiyonel analiz dahil olmak üzere matematiğin birçok dalına önemli katkılarda bulundu. Lenin Nişanı ve ilk Kurt Ödülü de dahil olmak üzere birçok ödülün sahibi, Kraliyet Cemiyeti'nin Yabancı Üyesi ve Moskova Devlet Üniversitesi'nde profesördü ve 76. doğum gününden kısa bir süre önce Rutgers Üniversitesi'nde Amerika Birleşik Devletleri'ne göç etti ve yaşamının sonuna dek orada kaldı.

<span class="mw-page-title-main">Değişmeli cebir</span>

İlk olarak ideal teori olarak bilinen Komütatif (değişmeli) cebir, cebirin değişmeli halkalarını, halkaların ideallerini ve bu halkalar üzerindeki modülleri inceleyen dalıdır. Hem cebirsel geometri hem de cebirsel sayı teorisi değişmeli cebire dayanır. Değişmeli halkaların öne çıkan örnekleri arasında polinom halkaları; sıradan tamsayılar dahil olmak üzere cebirsel tam sayı halkaları  ; ve p -sel tam sayıları içerir.

Matematikte, değişmeli grup olarak da adlandırılan Abel grubu, grup işleminin iki grup öğesine uygulanmasının sonucunun yazıldıkları sıraya bağlı olmadığı bir gruptur. Yani grup işlemi değişmelidir. Bir işlem olarak toplamayla tamsayılar ve gerçek sayılar değişmeli grupları oluşturur ve değişmeli grup kavramı bu örneklerin bir genellemesi olarak görülebilir. Abel grupları, 19. yüzyılın başlarındaki matematikçi Niels Henrik Abel'in adını ithafen adlandırılmıştır.

Matematikte homoloji, değişmeli gruplar veya modüller gibi bir dizi cebirsel nesneyi topolojik uzaylar gibi matematiksel nesnelerle ilişkilendirmenin genel bir yoludur. Homoloji grupları özgün olarak cebirsel topolojide tanımlanmıştır. Soyut cebir, gruplar, Lie cebirleri, Galois teorisi ve cebirsel geometri gibi çok çeşitli başka alanlarda da benzer yapılar mevcuttur.

Matematikte, değişmeli halka, çarpma işleminin değişmeli olduğu bir halkadır. Değişmeli halkaların incelenmesine değişmeli cebir denir. Değişmeli olmayan cebirse, değişmeli halkalara özgü olmayan halka özelliklerinin incelenmesidir. Bu ayrım değişmeli olmayan halkalara uzanmayan değişmeli halkaların temel özelliklerinin çok sayıda olmasından kaynaklanır.

Matematikte sonlu basit grupların sınıflandırılması, her sonlu basit grubun ya döngüsel ya da değişken olduğunu veya Lie tipi gruplar olarak adlandırılan geniş bir sonsuz sınıfa ait olduğunu belirten grup teorisinin bir sonucudur. Sporadik olarak adlandırılan yirmi altı veya yirmi yedi istisna mevcuttur. Kanıtların çoğu 1955 ile 2004 yılları arasında yayınlanan yaklaşık 100 yazar tarafından kaleme alınan birkaç yüz dergi makalesindeki on binlerce sayfadan oluşur.

<span class="mw-page-title-main">Analitik sayı teorisi</span>

Matematikte analitik sayı teorisi, tam sayılarla ilgili problemleri çözmek için matematiksel analiz yöntemlerini kullanan sayılar teorisinin dalıdır. Dirichlet'in aritmetik ilerlemeler üzerindeki teoreminin ilk kanıtını sunmak için Peter Gustav Lejeune Dirichlet tarafından 1837'de Dirichlet L - fonksiyonlarının tanıtılmasıyla kullanılmaya başlandığı söylenir. Asal sayılar ve toplam sayı teorisi üzerindeki sonuçlarıyla bilinmektedir.

Dinamik sistemler teorisi, genellikle diferansiyel denklemler veya fark denklemleri kullanarak karmaşık dinamik sistemlerin davranışını açıklamak için kullanılan matematik alanıdır. Diferansiyel denklemler kullanıldığında sürekli dinamik sistemler denir. Fiziksel bakış açısından, sürekli dinamik sistemler, klasik mekaniğin bir genellemesidir. Hareket denklemlerinin doğrudan varsayıldığı ve en az eylem ilkesinin Euler-Lagrange denklemleriyle sınırlandırılmadığı bir genellemedir. Fark denklemleri kullanıldığında ayrık dinamik sistemler olarak adlandırılır. Zaman değişkeni, bazı aralıklarda ayrık ve bazılarında sürekli olan bir küme üzerinde çalıştığında veya Cantor kümesi gibi rastgele bir zaman kümesi olduğunda, zaman ölçeklerinde dinamik denklemler elde edilir.

Matematikte, cebirsel sayı alanı rasyonel sayılar alanının sonlu derecede bir uzantısıdır. rasyonel sayılar alanının alan uzantısı iken sonlu dereceye sahiptir. Burada derece alanın bir vektör uzayı üzerindeki boyutunu ifade eder. Cebirsel sayı alanları, rasyonel sayıların alanının cebirsel alan uzantısı olduğundan, rasyonel sayıları içerir ve rasyonel sayılar üzerinde bir vektör uzayı olarak düşünüldüğünde sonlu boyuta sahiptir.

<span class="mw-page-title-main">Kategori (matematik)</span> cebir kavramı

Matematikte, bir kategori, "oklar" ile birbirine bağlanan "nesneler" koleksiyonudur. Bir kategorinin iki temel özelliği vardır. Bunlar okları birleşmeli olarak oluşturma yeteneği ve her nesne için bir birim okunun varlığıdır. Basit bir örnek; nesneleri küme olan ve okları işlev olan kümeler kategorisidir.

<span class="mw-page-title-main">Salomon Bochner</span> Amerikalı matematikçi (1899 – 1982)

Salomon Bochner, matematiksel analiz, olasılık teorisi ve diferansiyel geometri alanındaki çalışmalarıyla tanınan Galiçya doğumlu Amerikalı bir matematikçidir.