
Nükleer santral (NPP) veya atom santrali (APS), ısı kaynağının nükleer reaktör olduğu termik santraldir. Termik santrallerde tipik olduğu gibi, ısı, elektrik üreten jeneratöre bağlı buhar türbinini çalıştıran buhar üretmek için kullanılır. Eylül 2023 itibarıyla Uluslararası Atom Enerjisi Kurumu, dünya çapında 32 ülkede faaliyette olan 410 nükleer santral ve inşa halinde olan 57 nükleer santral olduğunu bildirdi.

Ağır su (D2O), nükleer reaktörlerde kullanılan, hidrojen yerine ağır hidrojen (döteryum) izotopuna sahip, yoğunluğu yüksek sudur.

Avrupyum ve Avrupyum (Eu), atom numarası 63 olan kimyasal elementtir.

Nükleer reaktör, zincirleme çekirdek tepkimesinin başlatılıp sürekli ve denetimli bir biçimde sürdürüldüğü aygıtlardır. Nükleer reaktörler bazen nükleer enerjiyi başka bir tür enerjiye çevrilen santraller olarak kullanılırlar.
Zenginleştirilmiş uranyum, içeriğindeki Uranyum-235 (kim. sembol 235U) oranı belirli yöntemlerle doğal seviyelerin üzerine çıkartılmış uranyum karışımıdır. Doğada bulunan toplam uranyum elementinin %99.284'ü Uranyum-238 (kim. sembol 238U) izotopundan oluşur. Zincirleme fisyon gerçekleştirme kabiliyeti bulunan tek uranyum izotopu olan Uranyum-235'in tüm uranyum rezervleri içerisindeki payı yalnızca %0.72'dir. Bu yüzden nükleer yakıt amaçlı olarak kullanılabilmesi için 235U izotopunun uranyum karışımı içerisindeki oranı arttırılmalıdır.
CANDU, 1960'larda tasarlanan basınçlı ağır su ile çalışan Kanada'ya ait bir nükleer elektrik santrali tipidir. CANDU söylemi, CANada Deuterium Uranium kelimelerinin baş harflerinden oluşan kısaltmayı ifade der. Kurulan ilk CANDU tipi reaktör 1962 ve 1987 seneleri arasında çalışmış ve Kanada'nın ilk nükleer enerji santrali olmuştur. Bu reaktör tipi Kanada başta olmak üzere, Hindistan, Güney Kore, Çin, Arjantin, Romanya ve Pakistan tarafından da kullanılmaktadır.
Bu listede dünya çapında, ticari elektrik üretme maksatlı bütün nükleer santraller vardır. Askeri, deney, araştırma, gemi vb. özel santraller kapsam dışıdır. Listeye, hâlen hizmette bulunanların yanı sıra hizmetten çıkan ve inşaatı sürenler de dahildir.

Magnox-Reaktörü dünyada kullanılan ilk ticari nükleer reaktör tiplerindendir.

Nükleer yakıt, nükleer enerji elde etmek için kontrollü nükleer füzyon ya da nükleer fisyon yapmak amacıyla kullanılan maddelerdir. Nükleer yakıtlar tüm yakıtlar içinde enerji yoğunluğu en yüksek olanlarıdır.

Su-Su Enerji Reaktörü, Sovyetler Birliği ve Rusya yapımı su soğutmalı ve yönetmeli basınçlı su reaktörler serisidir. VVER'lerin gücü 70-1300 MWe arasında değişmekte olup bazı tasarımları 1700 MWe güce ulaşabilmektedir.

Basınçlı su reaktörü (PWR), reaktör çekirdeğinin yüksek basınçlı su ile soğutulduğu nükleer reaktörlerdir.
Basınçlı ağır su reaktörü (PHWR) (İngilizce: pressurized heavy-water reactor), genellikle yakıt olarak zenginleştirilmemiş doğal uranyum ve soğutucu ve nötron moderatörü olarak ağır su (döteryum oksit D2O) kullanan nükleer reaktörlerdir. Ağır su soğutucusu suyu basınç altında tutarak kaynatılmadan basınçlı su reaktörlerden daha yüksek sıcaklıklara kadar ısıtılmasına olanak tanır.

Kaynar su reaktörü (BWR), elektrik enerjisi üretimi için kullanılan hafif su nükleer reaktörüdür. Kaynar su reaktörleri basınçlı su reaktörlerinden (PWR) sonra kullanılan ikinci reaktörlerdir. BWR ve PWR'ler arasındaki başlıca fark BWR'lerde reaktör çekirdeği suyu ısıtarak buhara dönüştürür ve bu buhar daha sonra buhar türbinini çalıştırır.

Üretken reaktör, enerji üretirken harcadığı bölünebilen madde miktarından daha fazlasını üreten nükleer reaktördür. Üretken reaktörler başlangıçta ekonomik olarak hafif su reaktörlerinden daha iyi olduğundan cazip bulunmuş olup cazibesi daha fazla uranyum rezervlerinin bulunması ve yeni uranyum zenginleştirme yöntemlerinin yakıt maliyetlerini azaltmasıyla 1960'lardan sonra düşmüştür.

Gelişmiş gaz soğutmalı reaktörü (AGR), soğutucu olarak karbondioksit ve nötron moderatörü olarak grafit kullanan ikinci nesil gaz soğutmalı nükleer reaktördür. AGR'ler Magnox reaktöründen geliştirildiler ve termal verimliliğinin gelişmesi için daha yüksek bir gaz sıcaklığında çalışırlar.

Erimiş tuz reaktörü veya Eriyik tuz reaktörü (MSR), baş nükleer reaktör soğutucusu ve yakıtının erimiş tuz olan IV. nesil nükleer reaktördür. MSR'ler daha yüksek bir termodinamik verimlilik için su soğutmalı reaktörlere göre daha yüksek sıcaklıklarda çalışabilmektedirler. Yüksek sıcaklıklarda çalışabildikleri için bu tip nükleer reaktörlerin ısıl verimi günümüzdeki nükleer reaktörlere göre oldukça yüksektir. Ayrıca şu anki nükleer reaktörler 150 ATM ve üzeri basınçta çalışırken, erimiş tuz reaktörleri atmosferik basınçta çalışırlar, bu da çok daha güvenli ve küçük olmalarını sağlar.
IV. Nesil III. Nesil reaktörlerin halefi olarak tasarlanan nükleer reaktör tasarımlarıdır. Birinci nesil sistemlerin çoğu kullanımdan kaldırıldığı için dünya çapında faaliyette olan reaktörlerin çoğu ikinci ve 3 nesil sistemlerdir. Generation IV International Forum, IV. nesil reaktörlerin gelişimini koordine eden uluslararası bir organizasyondur. V. Nesil reaktörler tamamen teoriktir ve henüz uygulanabilir olarak görülmemektedir.

Sıvı florür toryum reaktörü, bir tür erimiş tuz reaktörüdür. LFTR, yakıt için florür esaslı, erimiş, sıvı tuzlu toryum yakıt çevrimini kullanır.

Kimyasal reaktörler bir kimyasal reaksiyonun gerçekleştirildiği proses ekipmanlarıdır. Kimya mühendisliğinde proses tasarımı ve analizinde sık kullanılan klasik bir ünite prosesidir. Bir kimyasal reaktörün tasarımı, kimya mühendisliğinin birden fazla unsurunun kullanılmasını gerektirir. Reaktörler proseste ham maddelerin ürünlere dönüştüğü oldukça temel bir ekipman olduğundan proses tasarımı açısından büyük önem arz eder. Kimya mühendisleri bir reaksiyonun net bugünkü değerini en üst düzeye çıkarmak için reaktörler tasarlar. Tasarımcılar satın alma ve işletme maliyetini en düşük seviyelerde tutarken bir yandan da üretilen ürün miktarını en yüksek seviyede tutmak için reaksiyonun ürünler yönünde mümkün olan en yüksek verimle devamlılığını sağlarlar. Enerji girişi, enerji çıkışı, ham madde maliyetleri, işçilik vb. işletme giderlerine örnek olarak verilebilir. Isıtma, soğutma, basıncı artırmak için pompalama, sürtünmeden kaynaklı basınç düşüşü ve çöktürme gibi durumlar da enerji değişimlerine birer örnektir.

Shippingport Atom Enerjisi Santrali dünyanın yalnızca barış zamanı kullanımlarına ayrılmış ilk tam ölçekli atom elektrik santraliydi. Amerika Birleşik Devletleri, Pensilvanya, Beaver County'deki Ohio Nehri üzerindeki günümüz Beaver Valley Nükleer Üretim İstasyonunun yakınında, yaklaşık 40 km (40 km) uzaklıkta bulunmaktaydı.