İçeriğe atla

HSL ve HSV

HSL (hue, saturation, lightness) ve HSV (hue, saturation, value) (Türkçe: renk, doygunluk, açıklık ve renk, doygunluk, değer), 1970'lerde bilgisayar grafikleri araştırmacıları tarafından insan vizyonunun renk oluşturma özelliklerini algılama biçimiyle daha yakından uyumlu olması için tasarlanan RGB renk modelinin alternatif temsilleridir. Bu modellerde, her renk tonunun renkleri, alttan siyahtan üste beyaz arasında değişen nötr renklerin merkezi ekseni etrafında radyal bir dilim halinde düzenlenir. HSV temsili, farklı renkteki boyaların birbirine karışma şeklini, parlak renkli boyaların çeşitli renk tonlarını andıran doygunluk boyutu ve değişen miktarlarda siyah veya beyaz boya ile bu boyaların karışımına benzeyen değer boyutu modellenir. HSL modeli, Doğal Renk Sistemi (NCS) veya Munsell renk sistemi gibi daha algısal renk modellerine benzemeye çalışır ve Doygun renkleri 1⁄2 parlaklık değerinde bir dairenin etrafına yerleştirir, burada 0 veya 1 parlaklık değeri tamamen siyah veya beyazı temsil eder.

HSL silindiri.
HSV silindiri.

HSV uzayı, ilk tanımlandığı zamanlarda konik bir biçime sahipti. Ancak sonraki yıllarda, gerçek zamanlı geçerli koordinat denetimi için zamanın bilgisayarları yeterli olmadığından silindir biçimine dönüştürüldü. Açmak gerekirse, konik biçimde, aydınlık düzeyi azaldıkça koninin genişliği azalır, dolayısıyla, insan görüsüne uygun olarak, düşük aydınlıkta algılanabilen farklı doygunluk düzeyleri de azalırlar. Diğer yandan, silindir biçimi ile sıfır aydınlık düzeyinde bile yüksek doygunluk düzeyleri tanımlanabilir ve böylece geçersiz renkler elde edilebilir. Dolayısıyla görüntü işleme uygulamalarında konik biçimi tercih edilirken, renk seçimi görevlerinde silindir biçimi kullanılma eğilimini gösterir.

Dönüşümler

Aşağıdaki dönüşüm denklemleri RGB ile HSV'nin silindir biçimi arasında dönüşüm gerçekleştirilebilir:

RGB'den HSV'ye:

HSV'den RGB'ye:

Notlar

HSV uzayının konik biçimi her ne kadar silindir haline göre bazı olumlu yanlara sahip olsa da, aydınlık ölçüsü olarak R, G, B değerlerinin basitçe en büyüğünün kullanılıyor olması, insan görüsünün dalga uzunluğu hassasiyetlerinin kaale alınmamasına neden olur.[1]

Ayrıca bakınız

  • RGB

Kaynakça

  1. ^ Charles Poynton. Frequently-Asked Questions about Color 9 Nisan 2011 tarihinde Wayback Machine sitesinde arşivlendi.. 1997

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Vektör hesaplamada, divergence bir vektör alanının kaynak ya da batma noktasından uzaktaki bir noktada genliğini ölçen işleçtir; yani bir vektör alanının uzaksaması işaretli bir sayıdır. Örneğin ısındıkça genişleyen havanın hızını gösteren bir vektör alanının uzaksaması pozitif olacaktır, çünkü hava genişlemektedir. Eğer hava soğuyup daralıyorsa uzaksama negatif olacaktır. Bu özel örnekte uzaksama yoğunluğun değişiminin ölçüsü olarak düşünülebilir.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

Planck sabiti (h), bir fizik sabitidir ve kuantum mekaniğindeki aksiyonum kuantumu için kullanılır. Değeri h= 6.62607015×10−34 J⋅s' dir. Planck sabiti daha önceleri bir Fotonun enerjisi (E) ile elektromanyetik dalgasının frekansı (ν) arasında bir orantı idi. Enerji ile frekans arasındaki bu ilişki Planck ilişkisi veya Planck formülü olarak adlandırılır:

Genel fonksiyonlarda limit hesaplamak için bazı pratik kurallar verilmiştir. Formüllerdeki a ve b sayılarının x'e göre sabit olduğu düşünülecektir

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Elektrokimya, kimya biliminin bir alt dalı olup elektronik bir iletken ile iyonik bir iletken (elektrolit) arayüzeyinde gerçekleşen reaksiyonları inceler. Elektrokimyada amaç kimyasal enerji ve elektrik enerjisi arasındaki değişimi incelemektir.

<span class="mw-page-title-main">Güç (elektrik)</span>

Elektriksel güç, elektrik enerjisinde elektrik devresi tarafından taşınan güç olarak tanımlanır. Gücün SI birimi watt'tır. Elektrikli cihazların birim zamanda harcadığı enerji miktarı olarak da bilinir. 1 saniyede 1 joule enerji harcayan elektrikli alet 1 watt gücündedir.

Bernoulli dağılımı olasılık kuramı ve istatistik bilim dallarında, p olasılıkla başarı ile 1 değeri alan ve olasılıkla başarısızlık ile 0 değeri alan bir ayrık olasılık dağılımıdır. İsmi ilk açıklamayı yapan İsviçreli bilim insanı Jakob Bernoulli anısına verilmiştir.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

Kalite faktörü, fiziğin çeşitli dallarında osilasyon yapan sistemlerde osilasyonun verimini belirtmek için kullanılan bir terim.

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Delta metodu istatistikte, bir asimtotik normal istatistiki tahmin edicinin fonksiyonu için bu tahmin edicinin sınırlayıcı varyans bilgisi kullanılarak yaklaşık bir olasılık dağılımı türetme metodudur. Delta metodu merkezi limit teoreminin genelleştirilmiş hali olarak ele alınabilir.

<span class="mw-page-title-main">Enerji biçimleri</span>

Enerji biçimleri, iki ana grubu ayrılabilir: kinetik enerji ve potansiyel enerji. Diğer enerji türleri bu iki enerji türünün karışımdan elde edilir.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

Breit denklemi, Gregory Breit tarafından 1929'da Dirac denklemine dayalı olarak türetilmiş kökler kuralının ilk kuralına göre iki ya da daha fazla kütleli spini -1/2 olan parçacıkların elektromanyetizma açısından etkileşimini tanımlayan rölativistik dalga denklemidir. Manyetik etkileşimlerin ve  kuralına göre gecikme etkisinin nedeni açıklar. Diğer kuantum elektrodinamik etkileri ihmal edildiğinde, bu denklemin deney ile iyi bir uyum içinde olduğu görülmüştür. Bu denklem başlangıçta Darwin Lagrangian tarafından türetildi ancak daha sonra Wheeler-Feynman emme teorisi ve en sonunda kuantum elektrodinamiği tarafından doğrulandı.

Hamilton mekaniği klasik mekaniğin tekrar formüle edilmesiyle geliştirilmiş ve Hamilton olmayan klasik mekanik ile aynı sonuçları öngörmüş bir teoridir. Teoriye daha soyut bir bakış açısı kazandıran Hamilton mekaniği klasik mekaniğe kıyasla farklı bir matematiksel formülasyon kullanmaktadır. Tarihi açıdan önemli bir çalışma olan Hamilton mekaniği ileriki yıllarda istatistiksel mekanik ve kuantum mekaniği konularının da geliştirilmesine önemli katkılarda bulunmuştur.

Elektrokimyada Nernst denklemi, bir elektrokimyasal reaksiyonun indirgenme potansiyelini ; indirgeme ve oksidasyona uğrayan kimyasal türlerin standart elektrot potansiyeli, sıcaklığı ve aktiflikleri ile ilişkilendiren bir denklemdir. Denklemi formüle eden Alman fiziksel kimyacı Walther Nernst'in adını almıştır.