İçeriğe atla

Gözenekli güneş pili

Gözenekli Güneş Pili (İngilizce: Emitter Wrap Through Solar Cell) silisyum tabanlı güneş pili teknolojisinde daha yüksek verim elde edilmesi amaçlanan bir dizayndır. Çalışma prensibi standart güneş hücreleri ile aynı olup, silisyum pullar (en:wafer) üzerine açılan gözenekler, bütün metal kontaktların direnç kaybı olmadan arka yüzeyden alınabilmesine, bunun sayesinde ön yüzeyde oluşan aydınlanma kaybının önlenmesine yardımcı olur.

Çalışması

Gözenekli güneş hücreleri, standart güneş pili mantığıyla çalışan, güneşten aldığı foton enerjisini elektrik enerjisine çeviren cihazlardır. Standart güneş hücrelerinde güneş ışığı ile oluşturulan yük taşıyıcılar, güneş hücresinin ön ve arka tarafında bulunan metal kontaklar tarafından toplanarak devreye iletilir. Standart güneş hücresinde devreye verilen akım miktarı, hücrenin güneş gören yüzüne düşen foton sayısıyla orantılı olduğu için, ön yüzeyde bulunan metal kontakların yaptığı gölgeleme, hücreden alınan akım miktarını düşürmektedir. Ön kontakların yaptığı gölgelemeyi yok etmek için başvurulan yöntemlerden bir tanesi, her iki kontağı da hücrenin güneş görmeyen alt kısmından almaktır. Bu durumda ön yüzey tamamen güneş ışığına maruz kalacak, gölgelenmeden dolayı br kayıp yaşanmayacaktır. Fakat arkadan kontak alınan güneş pillerinde, farklı yüklerle yüklenmiş yük taşıyıcılarını ayırmak için gereken p-n eklemi, metal kontakların alt yüzeyde olmasından dolayı alt yüzeye daha yakın olmalıdır. Bu durum güneş hücresine gelen ışınların, p-n eklemine ulaşmadan soğurulmasına, sonuç olarak da alınan akımın düşük olmasına yol açmaktadır. P-N eklemi ön yüzeye yakın olarak oluşturulduğunda ise, metal kontaklar arka yüzeyde olduğu için, oluşan farklı yük taşıyıcılar, arka yüzeye ulaşamadan birbirleriyle birleşip yok olmaktadır. Bu iki durumu da engellemek için kullanılan yöntemler, çok daha ince ve yüksek saflıkta pullar (en:wafer) kullanmaktır. Bunun sonucunda güneş pili üretim maliyeti artarken pilin mekanik darbelere karşı dayanıklılığı düşmektedir.

Hem arkadan kontak alıp hem de düşük maliyetli ve dayanıklı güneş hücreleri oluşturabilmek için yapılan dizaynlardan bir tanesi de Gözenekli Güneş Pilidir. Güneş pili üzerine lazer veya başka bir yöntemle açılan gözenekler, p-n ekleminin, hem ön, hem arka, hem de gözeneklerin iç yüzeylerinde olmasını sağlamakta, böylece oluşan yük taşıyıcıların ömürleri(en:lifetime) bitmeden kontaklar tarafından toplanması sağlanmaktadır. Sonuç olarak daha kalın ve dayanıklı, daha düşük saflıkta ve ucuz güneş pilleri, yüzey gölgelemesi kaybı olmadan üretilebilmektedir.

Kaynakça

  • http://us.sunpowercorp.com 19 Aralık 2013 tarihinde Wayback Machine sitesinde arşivlendi.
  • André Kress et al., “Low-Cost Back Contact Silicon Solar Cells”, IEEE TRANSACTION ON ELECTRON DEVICES, VOL. 46, NO. 10 (1999) P. J. Verlinden, R. M. Swanson, R. A. Crane, K. Wickham, and J. Perkins, “A 26.8% efficient concentrator point-contact solar cells,” in Proc. 13th EC PVSEC, Nizza, Oct. 1995, p. 82.
  • C. Peters, P. Engelhart, M. Hlusiak, R.Wade, R. Jesswein, D. Rychtarik, J. W. Müller, “ALBA – DEVELOPMENT OF HIGH-EFFICIENCY MULTI-CRYSTALLINE SI EWT SOLAR CELLS FOR INDUSTRIAL FABRICATION AT Q-CELLS”, 23rd European Photovoltaic Solar Energy Conference, 1-5, Valencia, Spain(2008)
  • Keith R. McIntosh, Michael J. Cudzinovic, David D. Smith, William P. Mulligan and Richard M., “THE CHOICE OF SILICON WAFER FOR THE PRODUCTION OFLOW-COST REAR-CONTACT SOLAR CELLS”, Swanson SunPower Corporation, USA

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektrik akımı</span> elektrik yükü akışı

Elektrik akımı, elektriksel akım veya cereyan, en kısa tanımıyla elektriksel yük taşıyan parçacıkların hareketidir. Bu yük genellikle elektrik devrelerindeki kabloların içerisinde hareket eden elektronlar tarafından taşınmaktadır. Ayrıca, elektrolit içerisindeki iyonlar tarafından ya da plazma içindeki hem iyonlar hem de elektronlar tarafından taşınabilmektedir.

<span class="mw-page-title-main">Elektromotor kuvvet</span>

Elektromanyetizma ve elektronikte, elektromotor kuvvet, elektriksel olmayan bir kaynak tarafından üretilen elektriksel eylemdir. Cihazlar (dönüştürücüler); piller ya da jeneratörler gibi diğer enerji türlerini elektrik enerjisine dönüştürerek bir emf sağlar. Bazen elektromotor kuvveti tanımlamak için su basıncına bir analoji kullanılır.

<span class="mw-page-title-main">Güneş paneli</span> enerji kaynağı

Güneş paneli, fotovoltaik (PV) hücreler üzerinden güneş ışığını elektriğe dönüştüren bir cihazdır. PV hücreleri, ışığa maruz kaldıklarında devre boyunca akarak çeşitli cihazları çalıştırmak veya pillerde saklanmak üzere doğru akım (DC) elektrik üretir. Güneş panelleri aynı zamanda güneş pili panelleri, güneş elektrik panelleri veya PV modülleri olarak da bilinir.

<span class="mw-page-title-main">Güneş pili</span>

Güneş pili, Güneş Hücresi, Güneş Gözesi veya fotovoltaik hücre, fiziksel ve kimyasal bir fenomen olan fotovoltaik etki ile ışığın enerjisini doğrudan elektriğe dönüştüren elektrikli bir araçtır. Akım, voltaj veya direnç gibi elektriksel özellikleri ışığa maruz kaldığında değişen bir araç olarak tanımlanabilen bir fotoelektrik hücre formudur. Güneş hücreleri, genellikle halk arasında güneş panelleri ya da modülleri olarak bilinen fotovoltaik cihazların elektriksel yapı taşlarıdır. Genel olarak tek bağlantılı silisyum güneş hücresi, yaklaşık 0,5 ila 0,7 voltluk bir maksimum açık devre gerilimi üretebilir.

Elektrokimya, kimya biliminin bir alt dalı olup elektronik bir iletken ile iyonik bir iletken (elektrolit) arayüzeyinde gerçekleşen reaksiyonları inceler. Elektrokimyada amaç kimyasal enerji ve elektrik enerjisi arasındaki değişimi incelemektir.

<span class="mw-page-title-main">Fotovoltaik</span> Güneşten elektrik elde etme yöntemi

Fotovoltaik, güneş hücreleri ya da güneş panelleri sayesinde Güneş'ten elektrik elde etme yöntemidir. Fotovoltaik aynı zamanda bu konuda yapılan çalışmalara verilen genel bir addır.

Organik güneş pili veya organil güneş hücresi, Güneş'ten gelen ışığı aktif polimer tabakası ile absorbe eden ve doğrudan elektrik enerjisine çeviren bir cihazdır. İnorganik güneş hücrelerinden farklı olarak geniş yüzeylere kaplanabilmesi, düşük maliyetli olması ve kolay üretilebilmesinin yanı sıra organik kimyasındaki gelişmelere paralel olarak daha farklı özellikler kazandırılabilinir olması bu teknolojinin cazibelerindendir. Aktif polimer tabakası güneşten gelen ışığı absorbe edip elektron ve hol (boşluk) çiftleri (exciton) oluşturur. Yükler ayrıştıktan sonra elektronlar bir elekroda (katot), holler ise diğer elektroda (anot) doğru yol alırlar. Bu şekilde akım ve voltaj üretilir.

Mikrokristal silisyum ve mikromorf güneş pili, ince film güneş pili teknolojisinde 90'lı yıllarda ortaya çıkmıştır. Mikrokristal silisyum, ilk olarak 1960'lı yılların sonlarında keşfedilmiştir fakat amorf silisyumdan çok daha sonra güneş pillerinde kullanılmıştır. Tek krsital silisyuma göre çok ucuzdur ve üretimi kolaydır. Amorf silisyum (a-Si:H) gibi hidrojen katkılı kullanılır (μc-Si:H).

<span class="mw-page-title-main">Güneş lambası</span> Güneşten gelen enerjiyi elektrik enerjisine, elektrik enerjisini de ışık enerjisine dönüştüren cihazlardır

Güneş lambaları, Güneş'ten gelen enerjiyi elektrik enerjisine, elektrik enerjisini de ışık enerjisine dönüştüren cihazlardır. Trafikte şehir elektriğinden ve kablolardan tasarruf etmek için kullanılan bir yöntemdir. Led lambalarda enerjinin neredeyse tamamını görünebilir ışığa çevirebilir. Ampullü trafik lambaları ise enerjinin sadece % 20'lik bir kısmını görünebilir ışığa çevirebilir. Bazı lambalar sadece ışık geldiği zaman çalışmakta; bataryalı ampuller ise sabah depoladığı enerjiyi gece de kullanabilmektedir.

<span class="mw-page-title-main">Boyaya duyarlı güneş pilleri</span> ince filmli Güneş hücreleri Grubuna ait olan Güneş hücrelerdir

Bir boyaya duyarlı güneş hücreleri, düşük maliyetli ve ince filmli güneş hücreleri grubuna ait olan güneş hücreleridir. Avrupa enerji araştırmaları enstitüsü, 30 Haziran 2006, hücre bir anode ve bir elektrondan oluşan yarı iletkenlere dayanır. Boyaya dayalı güneş hücrelerinin modern versiyonu Brian O'Regan ve Michael Grätzel tarafından icat edilen Grätzel hücre olarak da bilinir. ve daha sonra bu çalışma 1991'de ilk yüksek verimli DSSC'nin yayınına kadar the École Polytechnique Fédérale de Lausanne'da adı geçen bilim adamları tarafından geliştirildi.

Monokristalin silikon bugün hemen hemen her elektronik ekipmanda kullanılan mikroçipler için temel bir malzemedir. Monokristalin silikon fotovoltaikde, güneş hücrelerinde ışık emici madde olarak kullanılır.

<span class="mw-page-title-main">Pil tarihi</span>

Yaklaşık 19.yüzyılın sonlarında, elektrikli jeneratörlerin ve elektrikli güç kaynaklarının geliştirilmesinden önce ana elektrik kaynağını piller sağlamaktaydı. Batarya teknolojisinde art arda gelen yenilikler, ilk bilimsel çalışmalardan tutun da, telgraf ve telefonların yükselişini ve nihayet portatif bilgisayarları, cep telefonların, elektrikli arabaları ve diğer birçok elektrikli aletler de dahil elektrik alanındaki başlıca gelişmeleri kolaylaştırmıştır.

<span class="mw-page-title-main">Süper kapasitör</span> Elektronik

Bir süper kapasitör (SC), bazen ultracapacitor, olarak bilinir ve yüksek kapasiteli bir elektrokimyakapasitorü ile kapasitans değerleri 10.000’de = 1.2 volt köprü boşluğu arasında elektrolitik kapasitörler ve piller ile şarj edilebilir. Onlar genellikle birim hacim başına 10 ila 100 kat daha fazla enerji veya elektrolitik kapasitörler daha kütle mağaza, kabul ve şarj çok daha hızlı pil vermekle kalmaz ve çok daha fazla şarj ve şarj edilebilir pillere göre daha fazla yükleme ve boşaltma yapabilir. Ancak belirli şartlar altında geleneksel pillere göre 10 kat daha büyüktür.

Plazmonik güneş pilleri ışıksal gerilimle çalışan cihazlar olarak tanımlanmaktadırlar ve plazmonları kullanaraktan ışığı elektriğe çevirmektedirler. Plazmonik güneş pilleri 1-2 mikrometre kalınlığında ince film şeklinde olan güneş pillerinden oluşmaktadırlar. Bu piller alt madde olarak silikondan daha ucuz olan malzemeleri kullanırlar, bu malzemelere örnek olarak cam, plastik veya çelik örnek verilebilir. İnce film güneş pilleri için en büyük problem kalın piller kadar fazla ışığı soğuramamalarıdır. Işığı yakalamak için önemli methodlara sahiptir ve bu methodları ince film güneş pillerini kullanılabilir hale getirmek amacıyla yapmaktadır. Plazmonik piller metal nanoparçacıklar kullanaraktan yüzeylerindeki plazmon rezonansını kararlı hale getirirler ve soğurma gücünü ışığı yansıtarak artırmaktadırlar. Bu yöntem ışığın direkt olarak kalın, fazladan katmanlı diğer tür ince film güneş pillerini kullanmadan soğurulmasını sağlar.

<span class="mw-page-title-main">Lityum polimer pil</span> Polimer elektrolit kullanılan Lityum-iyon pil

Lityum polimer pil veya daha doğrusu lityum-iyon polimer pil, sıvı elektrolit yerine jel polimer elektrolit kullanan, lityum-iyon teknolojisine sahip şarj edilebilir bir pildir. Bu piller, diğer lityum pil türlerinden daha yüksek özgül enerji sağlar ve mobil cihazlar, radyo kontrollü uçaklar ve bazı elektrikli araçlar gibi ağırlığın kritik bir özellik olduğu uygulamalarda kullanılır.

<span class="mw-page-title-main">Nikel-kadmiyum pil</span>

Nikel-kadmiyum pil elektrot olarak nikel oksit hidroksit ve metalik kadmiyum kullanan bir şarj edilebilir pil türüdür. NiCd kısaltması, nikel (Ni) ve kadmiyum (Cd) kimyasal sembollerinden türemiştir: NiCad kısaltması, SAFT Corporation'ın tescilli bir ticari markasıdır, ancak bu marka adı tüm Ni-Cd pillerini tanımlamak için yaygın olarak kullanılmaktadır.

<span class="mw-page-title-main">Olga Malinkiewicz</span> Fizikçi

Olga Malinkiewicz, Polonyalı fizikçi. Püskürtmeli yazıcı kullanarak perovskit bazlı güneş pilleri üretme yönteminin mucididir. Saule Technologies'in kurucu ortağı ve baş teknoloji yöneticisidir.

Şablon:KristalleştirmeCzochralski yöntemi, ayrıca Czochralski tekniği veya Czochralski işlemi, yarı iletkenlerin tek kristallerini, metalleri, tuzları ve sentetik değerli taşları elde etmek için kullanılan bir kristal büyütme yöntemidir. Metoda, 1915 yılında metallerin kristalleşme oranlarını araştırırken icat eden Polonyalı bilim adamı Jan Czochralski'nin adı verilmiştir. Czochralski ilgili keşfi tesadüfen yapmıştır: Kalemini mürekkep haznesine daldırmak yerine erimiş kalaya daldırmış ve kağıda daha sonra tek bir kristal olduğunu anladığı kalay bir filaman çekmiştir.

<span class="mw-page-title-main">Güneş Hücresi Verimliliği</span>

Güneş hücresi verimliliği, enerjinin güneş ışığı şeklindeki kısmınıngüneş hücresi tarafından fotovoltaik cihazlar yoluyla elektriğe dönüştürülebilen kısmını ifade eder.

<span class="mw-page-title-main">Amorf silisyum</span>

Amorf silisyum (a-Si), güneş pilleri ve LCD‘lerdeki ince-film transistörlerde kullanılan, silisyumun kristal olmayan halidir.