Grup teorisi
Grup teorisi veya Grup kuramı, simetrileri inceleyen matematik dalıdır. Simetri kuramı olarak da adlandırılabilir. Bir nesnenin simetrileri ile kast edilen, nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümlerdir. Her nesnenin en az bir simetrisi vardır: hiçbir şey yapmadan olduğu gibi bırakma dönüşümü. Bahsettiğimiz dönüşümlerin tersleri de vardır ve aradığımız özellikleri sağlarlar. Son olarak da dönüşümlerin art arda yapılması, birleşimli bir işlemdir. Bu üç koşula sırasıyla birim elemana sahip olma, elemenların tersi olma ve grup işleminin birleşmeli olması denir. Bu kavramların matematikte soyutlanması, üzerinde tersinebilir ve bileşme özelliğine sahip ikili bir işlemin tanımlı olduğu kümeler ile yapılır. Daha detaylı açıklamak gerekirse, grup nesnesi bir küme G ve onun üzerinde tanımlı bir işleminden oluşur. Bu operasyonun aşağıdaki şartları sağlaması gereklidir:
1) G'nin herhangi üç elemanı a, b, c için
eşitliği sağlanmalıdır,
2) G'nin öyle bir e elemanı vardır ki, G'deki herhangi bir a için
eşitliği sağlanır (yani e etkisiz elemandır) ve de e, G'de bu özelliği sağlayan tek elemandır,
3) G'deki her a elemanı için öyle bir b elemanı bulmak mümkündür ki
eşitliği sağlansın. Eğer bu eşitlik sağlanıyorsa b elemanına a elemanının tersi adı verilir.
Yukardaki tanımda dikkat edilmesi gereken bir nokta ise işlemimizin değişme özelliği olduğunu varsaymıyor oluşumuzdur. Yani bazı gruplarda öyle iki a ve b elemanı bulmak mümkündür ki olsun. Öte yandan eğer bir grupta fazladan değişme özelliği de varsa o gruba "Abel grubu" veya "değişmeli grup" denir. Gruplar sonlu, sayılabilir sonsuz veya sayılamaz sonsuz sayıda eleman içerebilirler.
Kısa tarih
İlk başta Fransız matematikçi Evariste Galois tarafından cisimler teorisi'ndeki sonlu genişlemeleri açıklamak için tanımlanmışlardır. Bu konu daha sonraları Galois genişlemeleri adıyla anılmaya başlanmış ve bu alanda karşımıza çıkan gruplara da Galois grupları denmiştir. Galois grupları günümüzde hala daha Cebirsel geometri alanının temel uğraş alanları içerisindedirler. Öte yandan gruplar saf matematikte hızla başka uygulama alanları bulmuşlar ve katı hal fiziği ve Oyunlar teorisi gibi uygulamalı alanlara da sıçramışlardır. 1980'li yıllarda tamamlanan sonlu grupların sınıflandırılması projesi modern matematiğin en büyük başarılarından biri olarak kabul edilir.
Gruplara bazı örnekler
1) Tam sayılar kümesi ve üzerindeki toplama işlemi, bir Abel grubudur.
2) 0'dan farklı rasyonel sayılar ve çarpma işlemi, bu da Abeldir.
3) Simetrik n grubu, kümesinden kendi içerisine birebir örten fonksiyonlardan oluşur. Eleman sayısı dir ve Abel değildir. n sonsuz ise, bu grubun eleman sayısı da sonsuzdur.
4) Lie grupları, diferansiyel geometri alanının uğraş konularıdır. Lie gruplarının en temel örneği, genel doğrusal grup olarak adlandırılan ve ile gösterilen, doğrusal uzayanın birebir örten ve doğrusal dönüşümlerinin oluşturduğu gruptur.
5) n bir pozitif tam sayı ve G, 2n mertebeli bir grup olsun G'nin (e, G'nin birimi) a2=e olacak şekilde e' den farklı bir a elemanı vardır.
6) Boş olmayan bir kümesi verilsin. tarafından üretilen serbest grup, ile gösterilen ve elemanları in elemanları tarafından oluşturulan sadeleşmiş kelimeler olan gruptur. boş olmadığından her zaman sonsuzdur. ise dir. ise değişmeli değildir.
Önemli Grup Sınıfları
1) Değişmeli gruplar, eleman sayılarına göre sonlu veya sonsuz olabilirler. Değişmeli grupların sınıflandırılması şöyledir: Grup eğer sonlu ise, mertebesi asal sayıların kuvvetleri olan devirli değişmeli grupların toplamı şeklinde yazılabilir. Mesela, i düşünelim. olduğundan tir. Aynı mertebeye sahip olan fakat birbirlerine izomorf olmayan değişmeli gruplar bulunabilir. Örnek olarak, mertebesi 8 olan değişmeli gruplar ailesi şu farklı grupları içermektedir: , ve . Sonsuz mertebeli değişmeli gruplar kendi içlerinde sonlu eleman tarafından üretilenler ve sonsuz eleman tarafından üretilenler olmak üzere iki sınıfa ayrılırlar. Sonlu eleman tarafından üretilen sonsuz değişmeli gruplar, nin tane kopyasının ve bir sonlu değişmeli grubun toplamı şeklinde ifade edilebilirler. Örnek olarak, yi verebiliriz. Burada sayısına o grubun rütbesi, yani rankı, denir. örneğinde rütbe 2 dir. Dikkat edilecek olursa, grubun rütbesinin tanımlandığı kısım, örnekte , grubun sonsuz kısmını ifade eder. Geriye kalan kısım, örnekte kısmı, grubun burulma (veya kıvrılma) kısmını ifade eder. Sonlu gruplar her zaman sonlu bir küme tarafından üretildiklerinden şu sonuca varırız: Sonlu eleman tarafından üretilen değişmeli gruplar (sonlu veya sonsuz olabilirler) her zaman bir serbest değişmeli kısım (yani li kısım) ve burulmalı kısmın toplamı şeklinde ifade edilebilirler.[1]
Başka bir örnek olarak, mertebesi 12 olan grupları düşünelim. Mertebesi 12 olan değişmeli gruplar ve tür. Mertebesi 12 olan fakat değişmeli olmayan gruplar, , ve dir. Bu lisetenin başka bir grup içermediği gösterilirken, başka bir deyişle, mertebesi 12 olan bir grubun bu listelenmiş gruplardan biri olduğu gösterilirken Sylow teoremleri kullanılır. Mertebesi 12 olan değişmeli grupların listesi hazırlanırken yukarıda bahsedilen sınıflandırma kullanılır.
2) Aşağıdaki tabloda, mertebesi küçük gruplar listelenmiştir.
Mertebe; | Grup |
---|---|
1 | |
2 | |
3 | |
4 | , |
5 | |
6 | , |
7 | |
8 | , , , , |
9 | , |
10 | , |
11 | |
12 | , , |
13 | |
14 | , |
15 |
3) Keyfi seçilmiş her grup bir grup gösterimine sahiptir. grubu verildiğinde, öncelikle yi üreten bir altkümesi seçilir. Böyle bir her zaman vardır çünkü seçilebilir. Serbest gruplar gruplar kategorisinin serbest objeleri olduklarından tarafından üretilen serbest grup her zaman vardır. kümesi yi ürettiğinden, nin elemanları tarafından üretilmiş sadeleşmiş serbest kelimelerin bir kısmı nin elemanlarını temsil ederler. Diğer bir kısmı ise içinde birim elemana eşit olan elemanları temsil ederler. kümesi ile, içinde birim elemanı temsil eden -kelimelerini gösterirsek, grup gösterimini elde ederiz.[2]
Örnek olarak, verilebilir. Bu gösterimden grubunun ve gibi iki eleman tarafından üretildiği ve bu iki eleman arasında ve ilişkilerinin olduğu görülür. ilişkisi grubun değişmeli olduğunu gösterir. Ayrıca, ve tarafından üretilen serbest grup nin kelimelerinin, bu ilişkilere göre sadeleştirilmiş halleri grubunun elemanlarını ifade ederler.
Gruplar, sonlu gösterimli ve sonsuz gösterimli olmak üzere iki sınıfa ayrılırlar. Sonlu gösterimli gruplar kümesi sonlu olan en az bir gösterimi kabul eden gruplardır. Hiçbir gösterimi sonlu olmayan gruplar ise gösterimi sonsuz sınıfına düşerler.
Sonlu gösterimli grupların Descartes çarpımları da serbest çarpımları da sonlu gösterimlidir. ve olsun. nin bir gösterimi dir. nin bir gösterimi ise dir.
4) üzerinde tanımlanan ikili işlemin, yine üzerinde tanımlanmış bir topolojiye göre sürekli olup olmaması önemli grup sınıfları oluşturur. Eğer, bu ikili işlem in topolojisine göre sürekli ise, grubuna topolojik grup denir. Benzer şekilde, üzerinde bir topoloji ve ayrıca gerçel analitik yapı var ise, mesela bir çokkatlı olabilir ve ikili işlem gerçel analitik ise, grubuna Lie grubu denir. Örnek olarak, 2 boyutlu tersinir kare matris grubu, bir gerçel 4 boyutlu tıkız olmayan bağlantısız Lie gruptur. Eğer gerçel yapı karmaşık yapıyla değiştirilirse, karmaşık Lie grubu elde edilir.[2]
5) Gruplar ayrıca, hiperbolik gruplar, uyumlu grup lar (amenable group), T-özelliğine sağlayan veya sağlamayan gruplar gibi ana sınıflara ayrılırlar.
Grupların Cayley Çizgeleri
Her gruba bir çizgesi tayin edilerek, çizge teorisinin kombinatorik sonuçları, grup teorisinde kullanılabilir.[2] Bu özel çizgeye Cayley çizgesi denir ve şöyle inşa edilir: grubunu üreten kümesi seçildikten sonra, nin her elemanına ile gösterilen bir renk atanır. Uçlar kümesi, yani , olarak kümesi seçilir. için şeklinde var ise, ucundan ucuna renkli kenar çizilir. Elde edilen renki yönlendirilmiş çizge dir.
- grup gösterimi ile verilen grubunun Cayley çizgesi şekilde verildiği gibidir. Bu çizgenin ucu bulunmaktadır. Uçlar, grup içinde denk geldikleri elemanların adları kullanılarak isimlendirilmişlerdir. kümesi olarak seçilmiştir. Kırmızı renk ile gösterilen kenarlar tarafından verilen kenarları, mavi renkli kenarlar ise tarafından verilen kenarları göstermektedir. Grup içerisinde, olduğundan, kırmızı kenarların dört defa art arda yönlü şekilde takip edilmesi, başlangıç noktasına dönmek demektir. Bu çizgenin topolojik olarak temel grubu tür. Ayrıca, uçların içine konulmuş olan F sembolü, ün tarif ettiği simetriyi anlatmaktadır.
- Yandaki şekilde, grup gösterimi ile verilen grubunun Cayley çizgesi verilmiştir. nin elemanları ve kullanılarak oluşturulabilecek kısaltılmış kelimeler olduklarından bu durumda sayılabilir sonsuzdur. Mesela, bu tür kelimelerdendir. Şekilde, bir uçtan çıkan ve sağ tarafa giden oklar ya, üst tarafa giden oklar ye, sol tarafa giden oklar e ve aşağı tarafa giden oklar e denk gelirler. bir serbest grup olduğundan, bir uçtan başlayıp yönlü şekilde kenarları katip edersek, başladığımız noktaya geri dönemeyiz. Ayrıca, bu çizge bir fraktaldır. Daha net olarak, şekilde verilen çizge, soyut çizgenin, düzleme gömülmüş halidir ve bu haliyle bir fraktaldır.
Grupların Cayley çizgeleri e her zaman gömülebilirler. Ayrıca, her yönlü çizge bir Cayley çizgesi değildir. Cayley çizgesi kullanılarak, grubun tekil Laplace operatörü tanımlanır.
Grupların Gösterim Kompleksleri
Grup gösterimleri kullanılarak, her gruba karşılık bir hücre kompleksi inşa edilir. Bu teknik, geometrik grup teorisinde sıklıkla kullanılır. gibi bir gösterimin verildiğini kabul edelim. ile tek noktası olan topolojik uzayı gösterelim. kümesinin her elemanı için, 1-boyutlu bir kenar, bu tekil noktaya uç noktalarından yapıştırılsın. Oluşan uzayı ile gösterelim. kümesinin elemanları, içinde birim elemana denk gelen kelimeler olduklarından, bu tür her kelimeye karşılık, 2-boyutlu bir disk, topolojik sınırı 1-boyutlu kenarlara denk gelecek şekilde yapıştırılabilir. Oluşan 2-boyutlu uzayı, nin hücre kompleksi dir. Bu hücre kompleksinin temel grubu nin kendisi olup, topolojik evrensel örtüsünün 1-boyutlu iskeleti nin Cayley çizgesidir.
Örnek: in gösterim kompleksi torustur.
Grup Teorisinin Diğer Teorilerle İlişkisi
Grup teorisi cebirin en sık kullanılan yapısı olduğundan, matematiğin diğer dallarında pek sık kullanılır. Aşağıda, bu ilişkilerin birkaçı açıklanmıştır.
- Topolojik uzaylar ile grup teorisi arasındaki münasebet, cebirsel topolojide tanımlanan temel grup ve homoloji gruplarıdır. Kabaca, topolojik uzaylar için tanımlanan ve görüntüleri grup kategorisi veya değişmeli kategori olan izleçler sayesinde, uzaylar arasındaki topolojik işlemler, grup kategorisinde cebirsel işlemlere dönüşürler. Seifert-Van Kampen teoremi; uzayların birleşimleri ile, denk gelen grupların ilaveli çarpımları arasındaki ilişkiyi sağlar. Ayrıca, gruba atanan Cayley çizgesi ve gösterim kompleksi, bazı cebirsel işlemlerin topolojik kategorisinde yapılmasını sağlar. Bunun sonucu olarak da, Hopf teoremi olarak bilinen,; grubun ikinci tekil homoloji grubunu, grubun gösterimini kullanılarak cebisel şekilde ifade eden teorem bulunur. Diğer bir taraftan, çokkatlıların gelişmiş şekli olan Satake-Thurston nun yörüngekatlıları (orbifold), grupların simetri özelliklerini kullanırlar ve Gromov un hiperbolik grupları ile Riemann yüzeylerinde dinamik sistemler arasında bağlantı kurarlar.[3][4]
- Analiz ile grup teorisi arasında şöyle bir münasebet vardır. Analizin alt kolu olan harmonik analiz, topolojik gruplarda integral operatörünün yapısını inceler. Bu çalışma, grubun uyumlu grup olup olmadığının, Kazhdan nın T-özelliğine sahip olup olmadığının belirlenmesi içindir. T-özelliği ve uyumluluk, grubun geometrisi ve tarif ettiği dinamik sistem ile ilgili bilgi verir.[5] T-özelliği ayrıca grup üzerindeki sürekli topoloji ile alakalıdır. Bunların yanında, topolojik gruplar için Fourier tip ve kotip denilen nicelikler tanımlanır.[6] Bu nicelikler, de Fourier dönüşümü ile ilgili olup, Banach uzaylarının tip ve kotip nicelikleri ile ilgilidir. Tip ve kotip, meşhur Khintchine eşitsizlikleri ve Banach uzaylarında olasılık ile alakalı olup, Banach uzaylarının Hilbert uzayı olup olmadıklarını kontrol etmek için kullanılır.
- Ergodik Teori ile grup teori arasında, ergodik teorem ile verilen bir ilişki vardır. Kabaca ergodik teorem, ölçülebilir ergodik bir dönüşümün uzay ortalaması ile zaman ortalamasının eşit olduğunu söyler. Bu da, grupların temsil teorisi, kaydırma operatörü (shift), kapalı kaydırılmış altuzaylar (subshift), grupların Cayley çizgeleri üzerinde hücresel otomat ve sonlu-tip gruplar (sofic groups) gibi dinamik sistem konularıyla alakalıdır.
Grup Teorisinin Önemli Uygulamaları
Aşağıda bazı önemli uygulamalar verilmiştir.[2]
- Rubik Küpünün çözümü grup teorisi kullanılarak elde edilir.
- Galois teorisinde, polinomların köklerinin simetrileri gruplar kullanılarak çalışılır.
- Grup teorisi, kriptografide sıklıkla kullanılır.
- Diferansiyel denklemlerin çözümlerinde ve simetrilerinde, Lie grupları kullanılır.
- Kimya biliminde, kristal yapıların sınıflandırılmasında grup teorisi kullanılır.
- Fizik biliminde, Noether teoremi ile fiziksel sistemlerin simetrileri ile o sistemin koruma kanunu arasında bir münasebet kurulur. Simetriler çoğu zaman gruplar kullanılarak izah edilir. Noether teoremi yüzeysel olarak, bir sistemin simetrisi var ise, o simetriye denk gelen ve zaman tarafından korunan bir niceliğin var olduğunu söylemektedir.
Kaynakça
- ^ [1] 28 Haziran 2012 tarihinde Wayback Machine sitesinde arşivlendi. Rusça Wiki
- ^ a b c d [2] 21 Haziran 2012 tarihinde Wayback Machine sitesinde arşivlendi. Grup Teori İngilizce Wiki
- ^ William Thurston, The Geometry and Topology of Three-Manifolds 12 Eylül 2010 tarihinde Wayback Machine sitesinde arşivlendi. (Chapter 13), Princeton University lecture notes (1978–1981)
- ^ André Haefliger, Orbi-espaces, pages 203–213 in "Sur les groupes hyperboliques d'après Mikhael Gromov", Progress in Mathematics 83 (1990), Birkhäuser. ISBN 0-8176-3508-4.
- ^ Bekka, Bachir; de la Harpe, Pierre; Valette, Alain (2008), Kazhdan's property (T) (PDF), New Mathematical Monographs, 11, Cambridge University Press, ISBN 978-0-521-88720-5, MR2415834, 7 Şubat 2012 tarihinde kaynağından arşivlendi (PDF), erişim tarihi: 17 Haziran 2012
- ^ D.J.H Garling, Inequalities A Journey into Linear Analysis, pages 144–14, Cambridge University Press, (2007).