İçeriğe atla

Grignard reaktifi

Kontrol Edilmiş
Genellikle Grignard reaktifleri RMgX olarak yazılır, ancak gerçekte magnezyum (II) merkezi, burada metilmagnezyum klorür ve THF'nin bis-eklentisi için gösterildiği gibi Lewis bazik çözücüler içinde çözüldüğünde dört yüzlüdür.

Bir Grignard reaktifi veya Grignard bileşiği, X'in bir halojen ve R'nin normalde bir alkil veya aril olduğu organik bir grup olduğu genel formül R−Mg−X'e sahip kimyasal bir bileşiktir. İki tipik örnek, metilmagnezyum klorür Cl−Mg−CH
3
ve fenilmagnezyum bromür (C
6
H
5
)−Mg−Br
'dir. Organomagnezyum bileşiklerinin bir alt sınıfıdır.

Grignard bileşikleri, yeni karbon-karbon bağları oluşturmak için organik sentezde popüler reaktiflerdir. Örneğin, uygun bir katalizör varlığında başka bir halojenlenmiş bileşik R'−X' ile reaksiyona sokulduğunda, tipik olarak bir yan ürün olarak R−R' ve magnezyum halojenür MgXX' verirler ve sonuncusu normal olarak kullanılan çözücülerde çözünmez. Bu açıdan organolityum reaktiflerine benzerler.

Saf Grignard reaktifleri son derece reaktif katılardır. Normalde dietil eter veya tetrahidrofuran gibi çözücüler içinde, su hariç tutulduğu sürece nispeten kararlı olan çözeltiler olarak ele alınırlar. Böyle bir ortamda, bir Grignard reaktifi, koordinasyon bağları ile iki eter oksijenine bağlanan magnezyum atomu ile bir kompleks halinde değişmez bir şekilde mevcuttur.

1900'de Grignard reaksiyonunun keşfi, 1912'de Nobel ödülü ile ödüllendirildi.

Sentezi

Grignard reaktifleri, bir organik halojenürün (normalde organobromür) magnezyum metali ile işlenmesiyle hazırlanır. Organomagnezyum bileşiğini stabilize etmek için siklik veya asiklik eterler gereklidir. Reaktifi protonoliz veya oksidasyon yoluyla hızla yok eden su ve hava, havasız teknikler kullanılarak hariç tutulur.[1] Reaktiflerin yine de kuru olması gerekmesine rağmen ultrason, magnezyumu su tüketecek şekilde aktive ederek Grignard reaktiflerinin ıslak çözücüler içinde oluşmasına izin verebilir.[2]

Katılar ve çözelti içeren reaksiyonlarda yaygın olduğu gibi, Grignard reaktiflerinin oluşumu genellikle bir indüksiyon süresine tabidir. Bu aşamada magnezyum üzerindeki pasifleştirici oksit uzaklaştırılır. Bu indüksiyon periyodundan sonra reaksiyonlar oldukça ekzotermik olabilir. Laboratuvardan üretim tesisine bir reaksiyon ölçeklendirildiğinde bu ekzotermiklik dikkate alınmalıdır.[3] Çoğu organohalojenür işe yarayacaktır, ancak karbon–flor bağları, özel olarak aktive edilmiş magnezyum dışında (Rieke metalleri aracılığıyla) genellikle reaktif değildir.

Magnezyum

Tipik olarak, Grignard reaktiflerini oluşturmak için reaksiyon, magnezyum şeridinin kullanılmasını içerir. Tüm magnezyum, organik halojenür ile reaksiyonları engelleyen pasifleştirici bir magnezyum oksit tabakası ile kaplanmıştır. Bu pasifleştirici tabakayı zayıflatmak ve böylece yüksek derecede reaktif magnezyumu organik halojenüre maruz bırakmak için birçok yöntem geliştirilmiştir. Mekanik yöntemler, yerinde hızlı karıştırma ve sonikasyon Mg parçalarının ezilmesini içerir.[4] İyot, metil iyodür ve 1,2-dibromoetan yaygın aktive edici maddelerdir. 1,2-dibromoetanın kullanımı, etkisi etilen kabarcıklarının gözlemlenmesiyle izlenebildiği için avantajlıdır. Ayrıca yan ürünler zararsızdır:

Mg + BrC2H4Br → C2H4 + MgBr 2

Bu aktive edici ajanlar tarafından tüketilen Mg miktarı genellikle önemsizdir. Küçük bir miktar cıva klorür, metalin yüzeyini karıştırarak reaktivitesini artıracaktır. Önceden oluşturulmuş Grignard reaktifinin eklenmesi genellikle başlatıcı olarak kullanılır.

Rieke magnezyum gibi özel olarak etkinleştirilen magnezyum, bu sorunu ortadan kaldırır.[5] Oksit tabakası ayrıca, oksitlenmiş tabakayı kazımak için[6] bir karıştırma çubuğu kullanılarak veya birkaç damla iyot veya 1,2-Diiyodoetan eklenerek ultrason kullanılarak parçalanabilir. Diğer bir seçenek ise süblimleştirilmiş magnezyum veya magnezyum antrasen kullanmaktır.[7]

Mekanizma

Mekanizma açısından, reaksiyon tek elektron transferiyle ilerler:[8][9][10]

R − X + Mg → R − X • - + Mg • +
R − X • - → R + X -
R + Mg • + → RMg +
RMg + + X - → RMgX

Grignard reaktiflerinin test edilmesi

Grignard reaktifleri neme ve oksijene karşı çok hassas olduğu için, bir partinin kalitesini test etmek için birçok yöntem geliştirilmiştir. Tipik testler, tartılabilir, susuz protik reaktiflerle titrasyonları içerir; bir renk göstergesi varlığında mentol. Grignard reaktifinin fenantrolin veya 2,2'-bipiridin ile etkileşimi bir renk değişikliğine neden olur.[11]

Mg transfer reaksiyonu (halojen-Mg değişimi)

Grignard reaktiflerinin alternatif bir preparasyonu, Mg'nin önceden oluşturulmuş bir Grignard reaktifinden organik bir halojenüre transferini içerir. Bu yöntem, Mg transferinin birçok fonksiyonel grubu tolere etmesi avantajını sunar. Tipik bir reaksiyon, izopropilmagnezyum klorür ve aril bromür veya iyodürleri içerir:[12]

i -PrMgCl + ArCl → i -PrCl + ArMgCl

Grignard reaktiflerinin reaksiyonları

Karbonil bileşikleri ile

Grignard reaktifleri, çeşitli karbonil türevleri ile reaksiyona girer.[13]

Grignard reaktiflerinin karbonillerle reaksiyonları
Grignard reaktiflerinin karbonillerle reaksiyonları

Grignard reaktiflerinin en yaygın uygulaması, aldehitlerin ve ketonların alkilasyonudur, yani Grignard reaksiyonu:[14]

CH3 C reaksiyonu (= O) CH (OCH3) 2 ile H2C = CHMgBr
CH3 C reaksiyonu (= O) CH (OCH3) 2 ile H2C = CHMgBr

Asetal fonksiyonun (korumalı bir karbonil) reaksiyona girmediğini unutmayın.

Bu tür reaksiyonlar genellikle sulu bir asidik çalışmayı içerir, ancak bu adım reaksiyon şemalarında nadiren gösterilir. Grignard reaktifinin bir aldehite veya bir prokiral ketona eklediği durumlarda, Felkin-Anh modeli veya Cram Kuralı genellikle hangi stereoizomerin oluşacağını tahmin edebilir. Kolayca protonu giderilen 1,3-diketonlar ve ilgili asidik substratlar ile Grignard reaktifi RMgX yalnızca enolat anyonu veren ve alkan RH'yi serbest bırakan bir baz olarak işlev görür.

Grignard reaktifleri, endüstriyel Naproksen üretiminde anahtar bir adımda örneğin alkil halojenürlerle nükleofilik alifatik ikamelerde nükleofillerdir:

Naproksen sentezi
Naproksen sentezi
Grignard reaktiflerinin çeşitli elektrofillerle reaksiyonları
Grignard reaktiflerinin çeşitli elektrofillerle reaksiyonları

Baz olarak reaksiyonlar

Grignard reaktifleri, protik substratlar için bir temel görevi görür (bu şema, tipik olarak su içeren çalışma koşullarını göstermez). Grignard reaktifleri baziktir ve alkoksitler (ROMgBr) vermek üzere alkoller fenoller vb. İle reaksiyona girer. Fenoksit türevi, salisilaldehit vermek üzere formilasyon paraformaldehide duyarlıdır.[15]

Metallerin ve metaloidlerin alkilasyonu

Organolityum bileşikleri gibi, Grignard reaktifleri de karbon-heteroatom bağları oluşturmak için kullanışlıdır.

Grignard reaktifleri birçok metal bazlı elektrofil ile reaksiyona girer. Örneğin, dialkilkadmiyum vermek için kadmiyum klorür (CdCl2) ile transmetalasyona uğrarlar:[16]

2 RMgX + CdCl 2 → R 2 Cd + 2 Mg (X) Cl

Schlenk dengesi

Grignard reaksiyonlarının çoğu eterli çözücüler, özellikle dietil eter ve THF içinde gerçekleştirilir. Şelatlayıcı dioksan ile bazı Grignard reaktifleri, diorganomagnezyum bileşikleri (R = organik grup, X = halojenür) vermek üzere bir yeniden dağıtım reaksiyonuna girer:

2 RMgX + dioksan kimyasal denge R2, Mg + MgX 2 (dioksan)

Bu reaksiyon, Schlenk dengesi olarak bilinir.

Organik halojenürler ile birleştirme

Grignard reaktifleri, diğer ana grup halojenürlerle yüksek reaktivitelerinin aksine, tipik olarak organik halojenürlerle reaksiyona girmez. Metal katalizörlerin varlığında, ancak Grignard reaktifleri C-C birleştirme reaksiyonlarına katılır. Örneğin nonilmagnezyum bromür, aşağıda gösterilen esteri hidrolize etmek için NaOH ile çalıştıktan sonra tris(asetilasetonato)demir(III) (Fe(acac)3) varlığında p-nonilbenzoik asit vermek üzere metil p-klorobenzoat ile reaksiyona girer. Fe(acac)3 olmadan, Grignard reaktifi, aril halojenür üzerinde ester grubuna saldıracaktır.[17]

Bir grignard reaktifi kullanılarak 4-nonilbenzoikasit sentezi
Bir grignard reaktifi kullanılarak 4-nonilbenzoikasit sentezi

Aril halojenürlerin aril Grignard reaktifleri ile birleştirilmesi için, tetrahidrofuran (THF) içindeki nikel klorür de iyi bir katalizördür. Ek olarak, alkil halojenürlerin birleştirilmesi için etkili bir katalizör, THF'de lityum klorür (LiCl) ve bakır (II) klorür (CuCl2) karıştırılarak hazırlanan dilityum tetraklorokuprattır (Li2CuCl4). Kumada-Corriu bağlantısı, [ikame edilmiş] stirenlere erişim sağlar.

Oksidasyon

Bir Grignard reaktifinin oksijenle işlenmesi, magnezyum organoperoksiti verir. Bu materyalin hidrolizi, hidroperoksitler veya alkol verir. Bu reaksiyonlar, radikal ara ürünleri içerir.

Alkol vermek için Grignard reaktiflerinin basit oksidasyonu, verimler genellikle zayıf olduğundan pratikte çok az önem taşır. Bunun tersine, daha sonra hidrojen peroksit ile alkole oksitlenen bir boran yoluyla iki aşamalı sekans (yukarıya bakınız), sentetik faydalıdır.

Grignard oksidasyonlarının sentetik faydası, Grignard reaktiflerinin bir alken mevcudiyetinde oksijen ile bir etilen uzatılmış alkole reaksiyonu ile arttırılabilir.[18] Bu modifikasyon, aril veya vinil Grignardlar gerektirir. Sadece Grignard ve alken eklenmesi, oksijen varlığının gerekli olduğunu gösteren bir reaksiyonla sonuçlanmaz. Tek dezavantaj, en az iki eşdeğer Grignard gerekliliğidir, ancak bu kısmen n-bütilmagnezyum bromür gibi ucuz bir indirgeyici Grignard ile ikili bir Grignard sisteminin kullanılmasıyla ortadan kaldırılabilir.

Grignard oksijen oksidasyon örneği
Grignard oksijen oksidasyon örneği

Eliminasyon

Boord olefin sentezinde, belirli-haloeterlere magnezyum eklenmesi, alken için bir eliminasyon reaksiyonu ile sonuçlanır. Bu reaksiyon, Grignard reaksiyonlarının kullanımını sınırlayabilir.

Boord olefin sentezi, X = Br, I, M = Mg, Zn
Boord olefin sentezi, X = Br, I, M = Mg, Zn

Endüstriyel kullanım

Grignard reaksiyonunun bir örneği, Tamoksifen'in[19] (stereoselektif olmayan) endüstriyel üretiminde (şu anda kadınlarda östrojen reseptörü pozitif meme kanserinin tedavisi için kullanılmaktadır) anahtar bir adımdır:[20]

Tamoksifen üretimi
Tamoksifen üretimi

Galeri

Kaynakça

  1. ^ Goebel, M. T.; Marvel, C. S. (1933). "The Oxidation of Grignard Reagents". Journal of the American Chemical Society. 55 (4). ss. 1693-1696. doi:10.1021/ja01331a065. 
  2. ^ Smith (1999). "Grignard Reactions in "Wet" Ether". Journal of Chemical Education. 76 (10): 1427. doi:10.1021/ed076p1427. 
  3. ^ Philip E. Rakita (1996). "5. Safe Handling Practices of Industrial Scale Grignard Ragents". Gary S. Silverman; Philip E. Rakita (Ed.). Handbook of Grignard reagents. CRC Press. ss. 79-88. ISBN 0-8247-9545-8. 
  4. ^ Smith, David H. (1999). "Grignard Reactions in "Wet" Ether". Journal of Chemical Education. 76 (10). s. 1427. Bibcode:1999JChEd..76.1427S. doi:10.1021/ed076p1427. 
  5. ^ Lai Yee Hing (1981). "Grignard Reagents from Chemically Activated Magnesium". Synthesis. 1981 (9). ss. 585-604. doi:10.1055/s-1981-29537. 
  6. ^ Clayden, Jonathan; Greeves, Nick; Warren, Stuart (2013), "Konformationsanalyse", Organische Chemie, Berlin, Heidelberg: Springer Berlin Heidelberg, ss. 399-423, ISBN 978-3-642-34715-3, erişim tarihi: 17 Kasım 2020 
  7. ^ Wakefield, Basil J. (1995). Organomagnesium Methods in Organic Chemistry. Academic Press. ss. 21-25. ISBN 0080538177. 
  8. ^ Garst, J. F.; Ungvary, F. "Mechanism of Grignard reagent formation".
  9. ^ Advanced Organic chemistry Part B: Reactions and Synthesis F.A. Carey, R.J. Sundberg 2nd Ed. 1983.
  10. ^ Garst, J.F.; Soriaga, M.P. "Grignard reagent Formation", Coord.
  11. ^ Krasovskiy (2006). "Convenient Titration Method for Organometallic Zinc, Harshal ady Magnesium, and Lanthanide Reagents". Synthesis. 2006 (5): 890-891. doi:10.1055/s-2006-926345. 
  12. ^ Knochel (2003). "Highly Functionalized Organomagnesium Reagents Prepared through Halogen–Metal Exchange". Angewandte Chemie International Edition. 42 (36): 4302-4320. doi:10.1002/anie.200300579. PMID 14502700. 
  13. ^ Gilman, Henry; Kirby, R. H. (Ağustos 1941). "Addition Reactions of Organometallic Compounds with Conjugated Systems1". Journal of the American Chemical Society. 63 (8): 2046-2048. doi:10.1021/ja01853a004. ISSN 0002-7863. 
  14. ^ Haugan (1997). "Total Synthesis of C31-Methyl Ketone Apocarotenoids 2: The First Total Synthesis of (3R)-Triophaxanthin" (PDF). Acta Chemica Scandinavica. 51: 1096-1103. doi:10.3891/acta.chem.scand.51-1096. 11 Ağustos 2011 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 26 Kasım 2009. 
  15. ^ Peters (2006). "A Multistep Synthesis for an Advanced Undergraduate Organic Chemistry Laboratory". Journal of Chemical Education. 83 (2): 290. doi:10.1021/ed083p290. 
  16. ^ "Unit 12 Aldehydes, Ketones and Carboxylic Acids" (PDF). Chemistry Part II Textbook for class XII. 2. India: National Council of Educational Research and Training. 2010. s. 355. ISBN 978-81-7450-716-7. 
  17. ^ Fürstner, Alois; Leitner, Andreas; Seidel, Günter (7 Ocak 2005), "4-Nonylbenzoic Acid", Organic Syntheses, Hoboken, NJ, USA: John Wiley & Sons, Inc., ss. 33-41, ISBN 0-471-26422-9, erişim tarihi: 17 Kasım 2020 
  18. ^ Youhei Nobe (2005). "Air-Assisted Addition of Grignard Reagents to Olefins. A Simple Protocol for a Three-Component Coupling Process Yielding Alcohols". J. Am. Chem. Soc. 127 (51): 18006-18007. doi:10.1021/ja055732b. PMID 16366543. 
  19. ^ Richey, Herman Glenn (2000). Grignard Reagents: New Developments. Wiley. ISBN 0471999083. 
  20. ^ Jordan VC (1993). "Fourteenth Gaddum Memorial Lecture. A current view of tamoxifen for the treatment and prevention of breast cancer". Br J Pharmacol. 110 (2): 507-17. doi:10.1111/j.1476-5381.1993.tb13840.x. PMC 2175926 $2. PMID 8242225. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Brom</span> 1826 yılında keşfedilen halojen ametal

Brom (Br), Antoine Balard tarafından 1826 yılında keşfedilen halojen ametal. Yunanca dışkı gibi koku anlamındaki bromosdan gelmiştir.

<span class="mw-page-title-main">Amin (kimya)</span>

Aminler, amonyaktaki bir veya daha fazla hidrojen atomunun organik radikaller ile değiştirilmesi yöntemiyle türetilmiş organik bileşikler ve fonksiyonel gruplardır. Yapısal olarak aminler amonyağa benzerler, ama bir veya daha fazla hidrojen atomu, alkil veya aril gibi organik sübstitüentlerle yer değiştirmiştir. Bu kuralın önemli bir istisnası RC(O)NR2 tipi bileşiklerdir (C(O) karbonil grubuna karşılık gelir), bunlara amin yerine amid denir. Amidler ve aminlerin yapıları ve özellikleri farklı olduğu için bu ayrım kimyasal olarak önemlidir. Adlandırma açısında biraz akıl karıştırıcı olan bir nokta, bir aminin N-H grubunun N-M (M= metal) ile değişmesi hâlinde buna da amid denmesidir. Örneğin (CH3)2NLi, lityum dimetilamid'dir.

Alkil halojenürlerin (R-X) magnezyum metali (Mg) ile tepkimesinden grignard bileşiği oluşur.

Organometalik kimya, metal içeren organik bileşiklerle ilgilenen bilim dalı. Genel olarak gösterimi R-Mg-X şeklindedir. Organometalik bileşikleri elde etmek için Mg ve susuz ortam vazgeçilmez iki özelliktir. Deney ortamında su buharının bulunması tepkimenin gerçekleşmesini engellediğinden çözücü olarak genellikle eter kullanılır.

<span class="mw-page-title-main">Alüminyum hidrür</span>

Alüminyum hidrür (ayrıca bilinen adıyla alan veya alüman), formülü AlH3 olan inorganik bileşik. Renksiz, piroforik ve katı bir maddedir. Araştırma laboratuvarlarının dışında nadiren karşılaşılmasına rağmen, alan ve türevleri organik sentezlerde indirgen madde olarak kullanılır.

<span class="mw-page-title-main">Sodyum bromür</span>

Sodyum bromür, NaBr formülüne sahip inorganik bir bileşiktir. Yüksek erime noktasına sahip beyaz kristal yapısıyla sofra tuzuna benzemektedir. Genellikle bromür iyonu kaynağı olarak çeşitli alanlarda kullanılmaktadır.

<span class="mw-page-title-main">İyot monoklorür</span> kimyasal bileşik

İyot monoklorür ICl formülü ile gösterilen bir interhalojen bileşiktir. Oda sıcaklığına yakın eriyen kırmızı-kahverengi renge sahip bir kimyasal bileşiktir. İyot ve klorun elektronegatifliği arasındaki fark nedeniyle, ICl oldukça kutupsaldır ve I+ kaynağı olarak davranır.

<span class="mw-page-title-main">Hidrojen iyodür</span> kimyasal birleşik

Hidrojen iyodür (HI) iki atomlu bir molekül ve hidrojen halojenürdür. Sulu çözeltisi, güçlü bir asit olan hidroiyodik asit veya hidriyodik asit olarak bilinir. Bununla birlikte, hidrojen iyodür ve hidroiodik asit, birincisinin standart koşullar altında bir gaz olması, diğerinin ise söz konusu gazın sulu bir çözeltisi olması bakımından farklıdır. Birbirine dönüştürülebilir. HI, organik ve inorganik sentezlerde birincil iyot kaynaklarından biri ve bir indirgeyici madde olarak kullanılır.

<span class="mw-page-title-main">Nitrozilsülfürik asit</span> Kimyasal bileşik

Nitrozilsülfürik asit, NOHSO4 formülüne sahip bir kimyasal bileşiktir. Endüstriyel olarak kaprolaktam üretiminde kullanılan renksiz bir katıdır. Daha önce sülfürik asit üretmek için öncü oda işleminin bir parçasıydı. Bileşik, sülfürik asit ve nitröz asidin karışık anhidritidir.

<span class="mw-page-title-main">Kloroplatinik asit</span> inorganik bileşik

Kloroplatinik asit (hekzakloroplatinik asit olarak da bilinir), [H3O]2[PtCl6](H2O)x (0≤x≤6) formülüne sahip bir inorganik bileşiktir. Kırmızı bir katı, genellikle sulu bir çözelti olarak önemli bir platin kaynağıdır. Genellikle kısaca H2PtCl6 olarak yazılsa da, hekzakloroplatinat anyonunun (PtCl62-) hidronyum (H3O+) tuzudur. Hekzakloroplatinik asit oldukça higroskopiktir.

<span class="mw-page-title-main">Sodyum tiyosiyanat</span>

Sodyum tiyosiyanat (bazen sodyum sülfosiyanür olarak da adlandırılır) NaSCN formülüne sahip kimyasal bileşiktir. Bu renksiz sulangan tuz tiyosiyanat anyonunun ana kaynaklarından biridir. Bu haliyle, ilaçların ve diğer özel kimyasal maddelerin sentezinde bir öncül madde olarak kullanılmaktadır. Tiyosiyanat tuzları tipik olarak siyanürün elementel kükürt ile olan reaksiyonuyla hazırlanır:

8 NaCN + S8 → 8 NaSCN

Retrosentetik analiz, organik sentezlerin planlanmasındaki problemleri çözmek için kullanılan bir tekniktir. Bu, reaktiflerle herhangi bir potansiyel reaktivite/etkileşimden bağımsız olarak bir hedef molekülün daha basit öncü yapılara dönüştürülmesiyle elde edilir. Her bir öncü malzeme aynı yöntem kullanılarak incelenir. Bu prosedür, basit veya ticari olarak temin edilebilen yapılara ulaşılıncaya kadar tekrar edilir. Bu daha basit/ticari olarak temin edilebilen bileşikler, hedef molekülün bir sentezini oluşturmak için kullanılabilir. Elias James Corey bu kavramı The Logic of Chemical Synthesis kitabında resmileştirdi.

Karbanyon, karbonun üç değerlikli olduğu ve formal yükü negatif olan bir anyondur.

<span class="mw-page-title-main">Açil klorür</span>

Organik kimyada, bir açil klorür (veya asit klorür) -COCl fonksiyonel grubuna sahip bir organik bileşiktir. Formülleri genellikle RCOCl şeklinde yazılır. Burada R bir yan zincirdir. Karboksilik asitlerin reaktif türevleridir. Açil klorürün özgün bir örneği, CH3COCl, asetil klorür'dür. Açil klorürler açil halojenürlerin en önemli alt kümesidir.

<span class="mw-page-title-main">Magnezyum klorür</span> İnorganik tuz: MgCl2 ve hidratları

Magnezyum klorür, MgCl
2
formülüne sahip kimyasal bileşiğin adıdır. Susuz şekline ek olarak, MgCl
2
çeşitli hidratlar MgCl
2
·nH
2
O
şeklinde olur. Bu tuzlar, suda oldukça çözünür olan tipik iyonik halojenürlerdir. Magnezyum klorür tuzlu su veya deniz suyundan ekstrakte edilebilir. Kuzey Amerikada, magnezyum klorür esas olarak Büyük Tuz Gölü tuzlu suyundan üretilir. Ürdün Vadisi'ndeki Lut Gölü'nden benzer bir işlemle çıkarılır. Mineral bişofit olarak magnezyum klorür de eski deniz yataklarından, örneğin kuzeybatı Avrupa'daki Zechstein deniz yatağından çıkarılır. Bu, ilk okyanustaki yüksek magnezyum klorür içeriği ile açıklanabilir. Bazı magnezyum klorür deniz suyunun buharlaşmasından yapılır. Susuz magnezyum klorür, büyük ölçekte üretilen magnezyum metalinin başlıca öncüsüdür. Hidratlı magnezyum klorür en kolay bulunabilen formdur.

<span class="mw-page-title-main">Diklorokarben</span>

Diklorokarben (karbon diklorür, diklorometilen, IUPAC: diklorometiliden) kimyasal formülü CCl2 olan reaktif ara maddedir. Bu kimyasal tür izole edilmemiş olmasına rağmen, organik kimyada kloroformdan üretilen yaygın bir ara maddedir. Bu bükülmüş diamanyetik molekül hızla diğer bağlara girer.

Sübstitüsyon reaksiyonu, kimyasal bileşikteki bir fonksiyonel grubun başka bir fonksiyonel grup ile değiştirildiği kimyasal bir reaksiyondur. Yer değiştirme reaksiyonları organik kimyada çok önemlidir. Organik kimyadaki ikame reaksiyonları, reaksiyonda yer alan bir reaktif ara maddenin bir karbokatyon, bir karbanyon veya bir serbest radikal olup olmadığına ve substratın alifatik veya aromatik olup olmadığına bağlı olarak ilgili reaktife bağlı olarak elektrofilik veya nükleofilik olarak sınıflandırılırlar. Bir reaksiyon türünün ayrıntılı olarak anlaşılması, bir reaksiyondaki ürün sonucunun tahmin edilmesine yardımcı olur. Ayrıca, sıcaklık ve çözücü seçimi gibi değişkenlere göre bir reaksiyonu optimize etmek için de yararlıdır.

<span class="mw-page-title-main">Trifenilfosfin</span>

Trifenilfosfin, P(C
6
H
5
)
3
formülüne sahip yaygın bir organofosfor bileşiğidir ve sıklıkla PPh3 veya Ph3P olarak kısaltılır. Organik ve organometalik bileşiklerin sentezinde yaygın olarak kullanılır. PPh3, oda sıcaklığında nispeten havada stabil, renksiz kristaller hâlinde bulunur. Suda çözünmez ancak Benzen ve dietil eter gibi polar olmayan organik çözücülerde çözünür.

<span class="mw-page-title-main">Fosforil klorür</span>

Fosforil klorür, POCl
3
formülüne sahip bir sıvıdır. Nemli havada hidrolize olup fosforik asit ve hidrojen klorür dumanı açığa çıkarır. Endüstriyel olarak büyük ölçekte fosfor triklorür ve oksijen veya fosfor pentoksitten üretilir. Esas olarak fosfat esterleri yapmak için kullanılır.

Kalay tetraklorür olarak da bilinen kalay(IV) klorür, inorganik bir kalay ve klor bileşiğidir. Havayla temas ettiğinde duman çıkaran, renksiz, higroskopik bir sıvıdır. Diğer kalay bileşiklerinin öncülü olarak kullanılır. İlk olarak Andreas Libavius (1550–1616) tarafından keşfedildi ve Spiritus fumans libavii olarak biliniyordu.