İçeriğe atla

Granger nedenselliği

Granger nedensellik sınaması, bir zaman serisinin başka bir zaman serisini tahmininde kullanışlı olup olmadığının bir istatistiksel hipotez sınamasıdır.[1] Normalde, bağlanımlar, "sadece" ilintileri yansıtırlar, ancak Ekonomi Nobel Ödülünü kazanan Clive Granger, belli bir sınamalar kümesinin nedensellikle ilgili bir şeyler ortaya çıkardığını savunmuştur.

X zaman serisi, X'in gecikmeli değerleri (ve Y'nin gecikmeli değerleri) üzerinde genellikle bir dizi t-sınamaları ve F sınamalarıyla X'in değerleri Y'nin gelecek değerleri hakkında istatistiksel olarak anlamlı bilgi verdiğinde Y zaman serisinin "Granger nedeni"dir.

Sezgisel Açıklama

"ilinti nedenselliğe eşittir" yanılgısı, başka bir şeyi öncelleyen bir şey bir nedensellik kanıtı olarak kullanılamayacağını belirtmektedir. "Artan eğitim harcamasının çocuklar için daha iyi sonuçlar üretir" iddiasını düşün. Okul masrafları harcamalarının eğitim sonuçlarına karşı basit bir ilintisi, pozitif bir sonuç ortaya çıkarır; daha fazla harcayanlar daha iyi sonuçlara sahiptir. Herhangi bir veri anda, gelir gibi etki karıştıran değişkenleri kontrol edebiliriz, ancak şimdiki eğitim harcaması gelecekteki performans sonuçlarını etkileyebilir. Granger nedensellik fikri: açıklayıcı değişkendeki bir "sürpriz"in varolduğu her durum, sonuç değişkeninde sürpriz sonrası bir artışa sebep oluyorsa, bu değişkene "Granger neden" değişken denir.

Eğitim örneğinde, bazı yıllarda eğitim harcamasının, etki karıştırıcıların önemli bir şekilde değişmediği halde alışılmamış üst düzeylere yukarı çıkışlar yaptığı bazı yerler olduğunu varsay. Bu yukarı çıkışların olduğu her anda, gelecekteki performansta, yukarı çıkışların olmadığı anlarla kıyaslandığında bu yukarı çıkışlara uyan artışlar varsa, eğitim harcaması, yüksek performansın "Granger nedeni"dir (G-nedenidir). Bu, nedenselliğin tek tanımı değildir, ancak birçok uygulamada kullanışlıdır.

Yöntem

Bir zaman serisi durağansa, Granger nedensellik sınaması, iki (veya daha fazla) değişkenin düzey değerleri kullanılarak yapılır. Zaman serisi değişkenleri durağandışıysa, Granger nedensellik sınaması, değişkenlerin birinci (veya daha yüksek) farkları kullanılarak yapılır. Bağlanım eşitliğindeki gecikme sayısı, genellikle, Akaike bilgi kriteri veya Schwarz bilgi kriteri gibi bir bilgi kriteri kullanılarak seçilir. Bağlanımda, değişkenlerden birinin herhangi bir belli gecikme değeri (uzunluğu), aşağıdaki iki koşul gerçekleşirse korunur:
(1) Değişkenin gecikmesi, bir t-sınamasına göre anlamlı
(2) Değişkenin bu belli gecikmesi ve diğer gecikmeleri birlikte, bir F-sınamasına göre modelin açıklayıcı gücüne katkır.
Bu durumda, " Hiçbir Granger nedeni yok" temel hipotezi korunur bağlanımda bir açıklayıcı değişkenin hiçbir gecikmesi korunmaz.

Uygulamada, değişkenlerin birbirlerinin Granger nedeni olmadığı bulunabilir veya iki değişkenden her ikisinin de birbirlerinin Granger nedeni olduğu bulunabilir. Yani, iki değişkenli durumda 4 farklı olasılık söz konusudur: 1), nin Granger nedenidir 2) ), in Granger nedenidir 3) ne ne de birbirlerinin Granger nedeni değildir 4) hem hem de birbirlerinin Granger nedenidir.

Kısıtlar

Adından da anlaşılacağı üzere, Granger nedenselliği doğru nedensellik olmayabilir. hem X hem de Y, ortak üçüncü bir sürecin farklı gecikmelerince tetiklenirse, hala Granger nedenselliğinin karşıt hipotezi kabul edilebilir. Ancak, değişkenlerden birinin değiştirimi diğerini değiştirmez. Gerçekten, Granger nedensellik sınaması, değişken çiftlerinin birbirleri arasındaki nedensellik ilişkisini bulmak üzere tasarlanmıştır ve gerçek ilişki üç veya daha fazla değişkeni gerektirdiğinde yanıltıcı sonuçlar üretebilir. Daha fazla değişken gerektiren benzer bir sınama, vektör özbağlanımla uygulanabilir.

Matematiksel deyim

y ve x durağan zaman serileri olsun. " x, ynin Granger nedeni değildir" temel hipotezinin adım adım sınaması:
(1) ynin tek değişkenli bir özbağlanımındaki ynin uygun gecikmeli değerleri (gecikme sayısı) bulunur:

(2) ynin özbağlanımı, xin gecikmeli değerleri katılarak genişletilir:

Bu bağlanımda, xin t-sınamalarına göre tek başına anlamlı olan tüm gecikmeli değerleri, gecikmeler birlikte bir F-sınamasına göre bağlanımın açıklayıcı gücüne güç katarsa korunur (F sınamasında temel hipotez: "x'ler birlikte açıklayıcı güce katkımaz). Yukarıdaki genişletilmiş bağlanım gösteriminde, xin gecikmeli değerini anlamlı yapan en kısa gecikme uzunluğu p, en uzun gecikme uzunluğu qdur.

" x, ynin Granger nedeni değildir" korunur yukarıdaki bağlanımda xin hiçbir gecikmesi korunmaz.

Genişletimler

Hata teriminin normal olarak dağıldığı varsayımından sapmalara duyarlı olmayan bir Granger Nedensellik yöntemi geliştirilmiştir.[2] Bu yöntem, birçok finansal değişken normal olarak dağılmadığından özellikle finansal ekonomide kullanışlıdır.[3] Son zamanlarda, literatürde, pozitif değişikliklerin nedensel etkisini negatif değişikliklerin nedensel etkisinden ayıran simetrik olmayan bir nedensellik sınaması önerilmiştir.[4]

Kaynakça

  1. ^ Granger, C. W. J. (1969). "Investigating Causal Relations by Econometric Models and Cross-spectral Methods". Econometrica. 37 (3). ss. 424-438. doi:10.2307/1912791. JSTOR 1912791. 
  2. ^ Hacker R.S. and Hatemi-J A. (2006) "Tests for causality between integrated variables using asymptotic and bootstrap distributions: theory and application" 13 Eylül 2011 tarihinde Wayback Machine sitesinde arşivlendi., Applied Economics, Vol. 38(13), pp. 1489–1500.
  3. ^ Mandelbrot, Benoit (1963). "The variation of certain speculative prices". Journal of Business. 36 (1). ss. 394-419. doi:10.1086/294632. 
  4. ^ Hatemi-J, A. (2012). "Asymmetric causality tests with an application". Empirical Economics. 42 (6). ss. forthcoming. doi:10.1007/s00181-011-0484-x. 

Konuyla ilgili yayınlar

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kovaryans</span>

Olasılık teorisi ve istatistikte, kovaryans iki değişkenin birlikte ne kadar değiştiklerinin ölçüsüdür. Kovaryans, iki rastgele değişkenin beraber değişimlerini inceleyen bir istatistiktir. İki değişkenin birbirine benzer (eş) işlevli olması kovaryant; iki değişkenin birbirine zıt işlevli olması kontravaryant olarak ifade edilir.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

Korelasyon, olasılık kuramı ve istatistikte iki rassal değişken arasındaki doğrusal ilişkinin yönünü ve gücünü belirtir. Genel istatistiksel kullanımda korelasyon, bağımsızlık durumundan ne kadar uzaklaşıldığını gösterir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Otokorelasyon</span>

Otokorelasyon ya da öz ilinti, bir sinyalin farklı zamanlardaki değerleri arasındaki korelasyonudur. Başka bir deyişle, gözlemlenen değerler arasındaki benzerliğin, zamansal gecikmenin bir fonksiyonu olarak ifadesidir. Otokorelasyon analizi tekrar eden örüntülerin tanınması, bir sinyalin kayıp temel frekansının tespit edilmesi gibi amaçlar için kullanılan bir matematiksel araçtır. Sinyal işlemede fonksiyonların ya da dizilerin analizi için sıkça kullanılır.

Varyans Analizi istatistik bilim dalında, grup ortalamaları ve bunlara bağlı olan işlemleri analiz etmek için kullanılan bir istatistiksel modeller koleksiyonudur. Varyans Analizi kullanılmaktayken belirlenmiş bir değişkenin gözlemlenen varyansı farklı değişim kaynaklarına dayandırılabilen varyans bileşenine ayrılır. En basit şekliyle varyans analizi birkaç grubun ortalamalarının birbirine eşit mi eşit değil mi olduğunu sınamak için bir çıkarımsal istatistik sınaması olur ve bu sınama iki-grup için yapılan t-test sınamasını çoklu-gruplar için genelleştirir. Eğer, çoklu değişkenli analiz için birbiri arkasından çoklu iki-örneklemli-t-sınaması yapmak istenirse bunun I. tip hata yapma olasılığını artırma sonucu doğurduğu aşikardır. Bu nedenle, üç veya daha fazla sayıda ortalamaların ististiksel anlamlığının sınama ile karşılaştırılması için Varyans Analizleri daha faydalı olacağı gerçeği ortaya çıkmaktadır.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

İstatistik biliminde normallik sınamaları bir seri parametrik olmayan istatistik sınamalar çeşididir. Normallik sınamalarının amacı verilmiş bir veri dizisinin normal dağılıma uygunluk iyiliğinin incelenmesidir. Bir sıra parametrik olmayan sınama geliştirilmiş bulunmasına rağmen birçok istatistikçi pratikte daha az kesin ve daha çok subjektif sağduyu ve ekpertiz gerektiren gösterim karşılaştırmalarını kullanmaktadır. Normallik sınamaları yalnız örneklem verilerinin doğrudan doğruya incelenmesinde kullanılmamakta, fakat özellikle ekonometrik analizlerde tek regresyon denklemi tahmininden sonra çıkan hataların normal olup olmadıklarının araştırılması için de çok kullanılmaktadırlar.

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

İstatistik bilim dalında, Spearman'ın sıralama korelasyon katsayısı veya Spearman'ın rho, bu istatistiksel ölçüyü ilk ortaya atan İngiliz psikolog Charles Edward Spearman'a atfen adlandırılmıştır. Matematik notasyon olarak çok defa eski Yunan harfi ρ ile belirtilir. Bir parametrik olmayan istatistik ölçüsüdür ve iki değişken arasındaki bağımlılık, yani korelasyon, ölçüsü olarak bulunup kullanılır. Bu demektir ki Spearman'in rho (ρ) katsayısı iki değişken için çokluluklar dağılımı hakkında hiçbir varsayım yapmayarak, bu iki değişken arasında bulunan bağlantının herhangi bir monotonik fonksiyon ile ne kadar iyi betimlenebilineceğini değerlendirmek amaçlı incelemedir.

Shapiro-Wilk Testi, örneklemelerde temel alınan istatistiksel yığının normal dağıldığı bir hipotezin sağlamasını yapan istatistiksel bir hipotez testidir. Parametrik olmayan istatistikte normallik testleri arasında yer almaktadır. Shapiro-Wilk Testi, Amerikalı istatistikçi Samuel Shapiro ile Kanadalı istatistikçi Martin Wilk tarafından 1965 yılında ortaya konuldu. Normal dağılım için analizin grafiksel bilgisini bir anahtar şeklinde normal olasılık grafiği kullanarak özetlemeye yönelik tezlerinin sonucudur.

Anderson-Darling sınaması, istatistik bilim dalında, bir parametrik olmayan istatistik sınaması olup örneklem verilerinin belirli bir olasılık dağılımı gösterip göstermediğini sınamak için, yani uygunluk iyiliği sınaması için, kullanılmaktadır. Bu sınama ilk defa 1952'de Amerikan istatistikçileri T.W.Anderson Jr. ile D.A.Darling tarafından yayınlanmıştır. Bu sınama Kolmogorov-Smirnov sınamasının değiştirilmesi ve olasılık dağılımının kuyruklarına daha çok ağırlık verilmesi ile ortaya çıkartılmıştır.

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.

F-testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan parameterik çıkarımsal sınama yöntemidir. F-testi sıfır hipotezine göre gerçekte bir F-dağılımı gösteren sınama istatistiği bulunduğu kabul edilen hallerde, herhangi bir istatistiksel sınama yapma şeklidir. Bu çeşit bir istatistiksel sınama önce Ronald Fisher tarafından 1920'li yıllarda tek yönlü varyans analizi için ortaya atılıp kullanılmış ve sonradan diğer şekillerde F-dağılım kullanan sınamalar da ortaya atılınca, bu çeşit sınamalara genel isim olarak F-testi adı verilmesi Ronald Fisher anısına George W. Snecedor tarafından teklif edilip, istatistikçiler tarafından F-testi bir genel isim olarak kabul edilmiştir.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Ki-kare testi veya χ² testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan bazıları parametrik olmayan sınama ve diğerleri parametrik sınama yöntemidir. Bu çeşit istatistiksel sınamalarda test istatistiği için "örnekleme dağılımı", sıfır hipotez gerçek olursa ki-kare dağılımı gösterir veya sıfır hipotez "asimptotik olarak gerçek" olursa, eğer sıfır hipotez gerçekse ve eğer örnekleme hacmi istenilen kadar yeterli olarak büyük ise bir ki-kare dağılımına çok yakın olarak yaklaşım gösterir.

Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.

ARDL Sınır Testi veya gecikmesi dağıtılmış otoregresif sınır testi,, Mohammad Hashem Pesaran ve Yongcheol Shin tarafından 2001 yılında geliştirilen test, seviyelerinde durağan olmayan en az iki serinin durağan bir bileşimi olduğunu ifade eden eşbütünleşme kavramını test etmek amacıyla kullanılan modeldir. Özetle uzun ve kısa dönem nedensellik ilişkilerini yakalamaya yarayan modeldir. Bu eşbütünleşme testinde, diğer eşbütünleşme testlerinde olduğu gibi aralarındaki eşbütünleşme ilişkisi incelenen serilerin aynı dereceden durağan olmaları şartı bulunmamaktadır.