İçeriğe atla

Grandi serisi toplamı

Kararlılık ve doğrusallık

1 − 1 + 1 − 1 + … serisine 12 değerinin atanabilmesini olanaklı kılan oynamalar

  • İki seriyi terim bazında toplamak ya da çıkarmak
  • Serinin her terimini bir sayıyla çarpmak
  • Terimlerin yerlerini toplamı etkilemeyecek biçimde "değiştirmek"
  • Serinin başına yeni bir terim ekleyerek toplamı artırmak

olarak sıralanabilmektedir.

Bu oynamalar tüm yakınsak seriler için doğru sonuçlar üretmektedir ancak 1 − 1 + 1 − 1 + … serisi yakınsak değildir.

Öte yandan, temel mantığı bu tür oynamalara dayanan ve Grandi serisine bir değer atayabilen birçok toplam yöntemi vardır. Bunlardan en basitleri kuşkusuz Cesàro toplamı ve Abel toplamıdır.[1]

Cesàro toplamı

Iraksak serilerin toplamına ilişkin ilk kalıcı yöntem 1890 yılında Ernesto Cesàro tarafından ortaya atılmıştır. Leibniz'in olasılıkçı yaklaşımına benzeyen bu yöntem bir serinin toplamını o serinin kısmi toplamlarının ortalaması olarak hesaplamaktadır. Yapılan işlem, her n değeri için σn ortalamasını hesaplamak ve n sonsuza giderken bu Cesàro ortalamalarının limitini almaktır.

Grandi serisinin aritmetik ortalamalar serisi

1, 12, 23, 24, 35, 36, 47, 48, …

biçiminde ifade edilebilir.

Burada, çift n değerleri için ve tek n değerleri için eşitlikleri geçerlidir.

Bu seri 12'ye yakınsadığından Σak Cesàro toplamı da bu değere eşit olur. Başka bir deyişle, 0, 1, 0, 1, … serisinin Cesàro limiti 12'ye eşittir.[2]

1 + 0 − 1 + 1 + 0 − 1 + … serisinin Cesàro toplamı 23'tür. Bu, bir serinin Cesàro toplamının seriye sonsuz çoklukta 0 ve ayraç ekleyerek değiştirilebileceğini göstermektedir.[3]

Abel toplamı

Ölçeklerin ayrılması

φ(0) = 1 olmak üzere bir φ(x) işlevi tanımlı, φ'nın +∞'daki limiti 0 ve bu işlevin türevinin integrali (0, +∞) aralığında tanımlıysa Grandi serisinin φ-toplamı tanımlıdır ve 12'ye eşittir.

φ üçgensel ya da üstel bir işlev yerine konularak Cesaro ve Abel toplamlarına dönülebilmektedir. φ'nın integralinin sürekli tanımlı olduğu varsayılıyor ise bu önerme, ortalama değer teoremi kullanılarak ve toplam bir integrale çevrilerek kanıtlanabilir.

[4]

Euler dönüşümü ve analitik süreklilik

Borel toplamı

Grandi serisinin Borel toplamı 12'ye eşittir. Bunun nedeni,

ve

eşitliklerinin sağlanıyor oluşudur.[5]

Notlar

  1. ^ Davis s. 152, 153, 157
  2. ^ Davis s. 153, 163
  3. ^ Davis s. 162-163
  4. ^ Saichev s. 260-262
  5. ^ Weidlich s. 20

Kaynakça

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Riemann toplamı</span>

Matematikte, Riemann toplamı genellikle fonksiyon eğrisinin altında kalan bölgenin yaklaşık alanıdır. Bu toplama, Alman matematikçi Bernhard Riemann'ın soyadı verilmiştir.

<span class="mw-page-title-main">Limit</span> Sayıların ucu

Limit kelimesi Latince Limes ya da Limites 'den gelmekte olup sınır, uç nokta anlamındadır. Öklid ve Arşimet tarafından eğrisel kenarlara sahip şekillerle ilgili olan teoremlerde kullanılmıştır. Limit kavramı, çok önceleri kullanılmasına rağmen sonra unutulmuş ve daha sonra Newton ile Leibniz'in eserlerinde görülmüştür. Mesela, diferansiyel hesapta bir eğri sonsuz küçük uzunlukta sonsuz kenara sahip bir çokgen olarak kabul edilir. Limit kavramından ortaya çıkan diferansiyel hesap, pek çok fizik probleminin kolayca ele alınmasını sağlar.

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

<span class="mw-page-title-main">Dirac delta fonksiyonu</span>

Adını Paul Dirac' tan alan Dirac delta fonksiyonu tek boyutta

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">1 − 2 + 3 − 4 + · · ·</span> Matematikte sonsuz bir seri

Matematikte 1 - 2 + 3 - 4 + ..., terimlerinin işaretleri sırasıyla değişen ardışık pozitif tam sayıların oluşturduğu sonsuz bir seridir. Serinin ilk m teriminin toplamı, Sigma toplama gösterimi kullanılarak şöyle ifade edilebilir:

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Harmonik seriler</span>

Harmonik seri ıraksak bir seridir, harmonik sözcüğü ise müzikten devşirilmiştir.

Matematikte ıraksak seri yakınsak olmayan bir sonsuz seridir. Bu, serinin kısmi toplamlarının herhangi bir limit değeri olmadığı anlamına gelmektedir.

1 − 1 + 1 − 1 + … sonsuz serisi ya da

Matematiksel çözümlemede Cesàro toplamı bir sonsuz diziye toplam değeri atamanın farklı bir yoludur. Bir dizi A toplamına yakınsıyorsa bu dizinin Cesàro toplamı da A olur. Cesàro toplamı, yakınsamayan dizilere de değer atayabilmektedir. Ne var ki, artı sonsuz değerine yönelen bir dizi hiçbir koşulda sonlu bir toplam değerine sahip olamayacaktır.

<span class="mw-page-title-main">Kuvvet serisi</span>

Matematikte kuvvet serisi

Z dönüşümü, matematikte ve sinyal işlemede bir dönüşüm. Zaman tanım kümesinde gerçel ve sanal bileşenleri olan herhangi bir ayrık işareti, frekans tanım kümesindeki biçimine dönüştürür.

Normalleştirme sabiti, olasılık kuramı ve matematiğin diğer çeşitli alanlarında ortaya çıkar. Örneğin normal dağılımın normalleştirme sabitini hesaplamak için Gauss integrali kullanılabilir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

<span class="mw-page-title-main">Theodorus sarmalı</span> Arşimet spiralinin ayrık analog versiyonu

Geometride, Theodorus Sarmalı, uç uca yerleştirilmiş dik üçgenlerden oluşan bir spiraldir. Adını, Cyreneli Theodorus'tan almıştır.